Geoinformatica
https://doi.org/10.1007/510707-019-00343-4

®

Top-k trajectories with the best view Check for
updates

Nafis Irtiza Tripto' - Mahjabin Nahar! - Mohammed Eunus Ali’ -
Farhana Murtaza Choudhury? . J. Shane Culpepper? - Timos Sellis3

Received: 18 April 2018 / Revised: 7 December 2018 / Accepted: 13 February 2019/

Published online: 26 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

The widespread availability of GPS and the growing popularity of location based social
networking applications such as Flickr, Yelp, etc., enable more and more users to share
their route activities or trajectories. At the same time, the recent advancement in large-scale
3D modeling has inspired applications that combine visibility and spatial queries, which
in turn can be integrated with user trajectories to provide answers for many real-life user
queries, such as “How can I choose the route which provides the best view of a historic
site?”. In this work, we propose and investigate the k Aggregate Maximum Visibility Tra-
jectory (kAMVT) query and its variants. Given sets of targets, obstacles, and trajectories,
the kAMVT query finds top-k trajectories that provide the best view of the targets. We
extend the kAMVT query to incorporate different weights (or preferences) with trajectories
and targets. To provide an efficient solution to our problem, we employ obstacle and trajec-
tory pruning mechanisms. We also employ an effective target ordering technique, which can
further improve query efficiency. Furthermore, we extend the proposed queries to introduce
preferences on trajectories in situations where smaller trajectories are preferred due to time
constraints, or trajectories closer to the query user are preferred. To verify the efficiency
and effectiveness of our solutions, we conduct an extensive experimental study using large
synthetic and real datasets.

Keywords Spatial databases - Query processing - Obstacles - Trajectories - Visibility

P4 Mohammed Eunus Ali
eunus @cse.buet.ac.bd

Farhana Murtaza Choudhury
farhanamc @rmit.edu.au

Timos Sellis

tsellis@swin.edu.au

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
2 RMIT University, Melbourne, Australia

Swinburne University of Technology, Melbourne, Australia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-019-00343-4&domain=pdf
mailto: eunus@cse.buet.ac.bd
mailto: farhanamc@rmit.edu.au
mailto: tsellis@swin.edu.au

Geoinformatica

1 Introduction

With the widespread use of GPS-equipped mobile devices and popular map services, an
unprecedented amount of trajectory data is becoming available. For example, in Bikely'
users can share their cycling routes from GPS devices; in GPS-wayPoints? a user can add
waypoints (points on a route where a course has changed) in a route and share with friends;
users can share their travel routes and experience using GPS trajectories in Microsoft Geo-
Life.3 Most of the popular social network sites, e.g., Flickr, Yelp, Twitter, Foursquare, and
Facebook also support sharing user trajectories.

People explore and describe locations and travel experiences with a strong emphasis on
visual senses. While the increasing availability of large-scale 3D models from mapping
services, such as Google Maps, Google Earth, OpenStreetMap, and indoor 3D mapping ser-
vices such as Google Tango inspire the applications involving visibility in spatial databases,
applications involving visibility in trajectories has received little attention in the literature.

Measuring visibility from travel routes and ranking the routes have many applications in
tourism, trip planning, advertisement, and businesses, for example:

— Trip planning: Consider a scenario where a tourist plans to visit historic sites in Rome,
but is unsure which routes would provide the best views of these sites. In real life, visual
obstacles such as buildings in the city may completely or partially block the view of the
historic sites of interest. Routes followed by the previous tourists, which are “histori-
cal” trajectories in the target area can provide some guidance on which routes are the
best.

— Virtual reality (VR) based trip planning: Consider a scenario that integrates a VR
device with Google Earth to offer a tourist a visual guide using an augmented heat map.
The heat map essentially assigns different colors to different road segments (or parts of
trajectories) based on the visibility of the selected historic sites (targets) that the tourist
wants to visit. Then, the tourist can select a path that would be most likely to provide
the best visual experience from a potential set of trajectories based on this heat map.

— Indoor route planning: The Google Tango device can now capture 3D models of
indoor spaces. Consider a scenario of a large Museum, where the layouts of the entire
indoor space including the artifacts that are on display have been captured. The Museum
authority also regularly captures the paths of each individual visiting the Museum as
a trajectory. Walking around each artifact to find the best possible view is not always
feasible for a tourist in a limited time constraint. In this scenario, a guided tour path
can be presented to a new visitor that includes the desired artifacts with an improved
visual experience from historical paths of previous visitors.

Example 1 Figure 1 illustrates an example scenario, where the user # wants to visit two
target sites ¢; and #, and the database contains historical trajectory data /1, I», and I3 of
the previous users. Each trajectory consists of a sequence of geo-spatial data points. Here,
01,02, ..., 07 are different obstacles located around the site. For each target, we consider
a visible range around it (shown with a dotted circle) assuming that the target is not visible
from any trajectories outside of this visible range.

Thttp://www.bikely.com
2http://gpswaypoints.net
3https://research.microsoft.com/en-us/projects/geolife/

@ Springer

http://www.bikely.com
http://gpswaypoints.net
https://research.microsoft.com/en-us/projects/geolife/

Geoinformatica

Fig.1 An example of the -

- SO oo
kAMVT query L‘ 7 l:ols AN ~..
N N
// A ‘:’03 //\\ \\
7 N\
’
‘m Bo. /&~ |
| O ' o, ! %6 \
1 2 |
. | ' t |
\ I, | , 2 b
\ ' /7
\ \ ’ ,,
N Oos 7 K

Assume that u wants the best visibility trajectory for the target ¢;. For t{, certainly /, pro-
vides the maximum visibility, since the views from both /{ and /3 are obstructed. Therefore,
I is the best visibility scored trajectory with respect to ¢;.

Now consider the case where u wants the top-2 trajectories with the best visibility of
both targets #; and t,. It is clear that both #; and t, are visible from /1 and /,, but only #; is
visible from /3 since it is outside of the visible range of ;. Suppose, the user wants to find
the top two trajectories based on the combined visibility of both target objects. Here, /; and
I> are the candidates for the best combined visibility, since they provide some visibility for
both targets. Therefore, the result will be (I, [1).

In the application scenarios and the example, the underlying problem is to find the k&
best trajectories that provide the aggregated visibility of a set of query target objects in an
obstructed space. In real applications, the trajectories can be associated with weights based
on different criteria. For example, (i) if a trajectory with fewer segments and shorter length
is more preferable, then a higher weight can be assigned to such trajectories (/3 is more
preferable considering f1); (ii) if the trajectories closer to a specific location (the user’s
current location for example) is preferable, the weight of each trajectory can be assigned
according to the distance from that specific location (/1 is more preferable since it nearer to
the location of user u). Moreover, the preference for each target object can be different for
a user.

In this paper, we address the problem of finding a limited number of weighted trajectories
with the maximum aggregated visibility of a set of query target objects in an obstructed
space. We denote this problem as the k Aggregate Maximum Visibility Trajectory (kAMVT)
query. Formally, given a set of trajectories L where each trajectory is associated with a
weight, a set of obstacles O, a set of query target objects 7', an aggregation function f, a
preference vector P over T, and a positive integer k, kAMVT returns k trajectories from
L that provide the maximum aggregated visibility of T according to function f and the
preference vector P.

The visibility problem has been extensively studied in the fields of Computational
Geometry and Computer Graphics by constructing visibility polygons and visibility graphs.
However, these algorithms rely heavily on accessing all obstacles and/or preprocessing of
data, which is unsuitable in spatial applications due to the dynamic nature of data and the
time constraints [1-3, 18, 38, 46]. Moreover, visibility is also considered as a Boolean notion
(visible/ not visible) in several studies [4, 37, 42]. Masud et al. [24] introduce a query called
the Maximum Visibility (MV) query which finds the location that maximizes the visibility
of the target object. Since an MV query [24] considers a single target only, and computes
visibility from point locations, their methods cannot be directly extended to solve the max-
imum visibility problem for trajectories. Also the problem becomes more challenging for

@ Springer

Geoinformatica

multiple targets. Rabban et al. [30] introduce a Visibility Color Map (VCM), where the space
is partitioned, and a heat-map of the space is generated by assigning a color to each partition
according to the visibility of a pre-defined target. However, this approach cannot be directly
extended to our problem which ranks trajectories according to visibility w.r.t. multiple target
objects.

Although several studies have addressed the problem of ranking trajectories and return-
ing the top ones based on different spatial similarity metrics, the visibility of an object
introduces additional challenges. The visibility of a target object with respect to a user tra-
jectory depends not only on location, but also on other objects (visual obstacles) between
them. In addition, since visibility is commonly defined with respect to a point location, one
challenge is to define and compute visibility with respect to a sequence of line segments
(the trajectories).

In this paper, we introduce and address the k Aggregate Maximum Visibility Trajec-
tory query. As in real applications this query can have many variations (weighted vs.
non-weighted trajectories, single vs. multiple target objects), and we present a general
framework to address the AAMVT and its variants. We propose several techniques to effi-
ciently answer the kAMVT query. Specifically, the technical contributions of our solution
include:

— Trajectory partitioning: Due to the presence of obstacles, different portions of a target
can be completely or partially obstructed from different points over a trajectory. To
compute how well a target object is visible from a trajectory, the idea is to partition a
trajectory in a visually meaningful way such that for each partitioning, the visible part
of a target from each of the points of the partition can be considered as the same.

— Obstacle Pruning: The intuition behind the idea of obstacle pruning is that the obsta-
cles that are shadowed by other obstacles will not affect the visibility of the target. In
this way, many obstacles can be pruned.

— Trajectory Pruning: If a trajectory previously performed poorly compared to other
trajectories, it will not be included in the final list, and can thus be pruned. Besides,
if a portion of a trajectory is blocked by an obstacle, that portion can be eliminated
from consideration. We achieve this by maintaining an upper and lower bound on the
visibility of a trajectory.

— Efficient Target Selection: Instead of considering the targets randomly, we can order
them according to the number of trajectories that are inside their visibility range. In this
way, we can eliminate many trajectories from consideration, and in some cases, can
eliminate a target altogether.

In summary, the contributions of our paper are as follows:

— We formulate the tAMVT query for spatial databases, and propose natural extensions
of the problem.

— We define the notion of visibility of a target with respect to a trajectory.

— We introduce efficient approaches to prune a significant number of trajectories and
obstacles in the spatial databases at query time.

— Finally, we conduct an experimental study on real and synthetic spatial data to compare
our proposed solutions.

The rest of paper is organized as follows. Section 2 reviews the related work, Sec-
tions 3 and 4 formally define the problem and objective function respectively. In Section 5,
we describe our proposed solution. Section 6 presents the experimental results. Finally in
Section 7 we provide conclusions and future directions.

@ Springer

Geoinformatica

2 Related work

The related body of work mostly includes studies in visibility computation in computer
graphics and computational geometry, advanced spatial query processing, visibility based
spatial query processing, and query processing with trajectories.

2.1 Visibility in computational geometry and computer graphics

Computational geometry and computer graphics literature mostly focus on the binary notion
of visibility, where a point or an object is either visible or invisible from another point.

In the field of computational geometry, visibility computations are performed using visi-
bility graphs and visibility polygons [1-3, 18, 38, 46]. A visibility graph is defined in [3] by
a set P of n points inside a polygon Q where two points p, g € P are joined by an edge if
the segment pg C Q. Ben et al. [3] used a visibility graph to propose a near optimal algo-
rithm for simple polygons. They also introduce the concept of robust visibility for polygons
with holes, and proposed a near optimal algorithm for that case.

A visibility polygon V(g) of a point ¢ in a polygon P is defined as the set of points in
P that are visible from g [46]. Two points p, g inside a polygon are visible to each other if
their connecting segment pg remains completely inside the polygon. Zarei and Ghodsi [46]
computed the visibility polygon of a query point inside a non-simple polygon by converting
it into a simple polygon. Asano et al. [1, 2] later reduced the space requirement and pre-
processing time. Although these algorithms solve the problem of constructing a visibility
polygon, they are based on preprocessing or accessing all obstacles, which make them inap-
propriate for many spatial database applications as updates will invalidate the preprocessing
steps and accessing all objects is often too expensive.

Visibility computations are also a well studied topic in the area of computer graphics.
Visibility maps are often used [4, 37, 42], which are graphs describing a view of the scene
including the topology. Visibility maps can be constructed from a fixed viewpoint [4, 37],
or from a moving viewpoint [42]. However, in these approaches, visibility is defined from
a point source and also the binary notion of visibility is only considered. Kim et al. [20]
investigated the problem of visibility of/from an extended region, and determined the subset
of the space which is completely visible from a region. However, this method ignores the
case of partial visibility of a space.

Existing methods in computer graphics utilize various indexing structures such as an
LoD-R-tree or HDoV-tree to support visibility queries in visualization systems [10, 35].
They used various acceleration techniques to render complex models at interactive frame
rates. However their main focus was rendering a scene, while our work focuses on calcu-
lating the visibility of a set of targets from multiple trajectories, and ranking them based on
visibility.

2.2 Spatial query processing in the obstructed space

Spatial query processing such as finding the k nearest neighbors of a query point has been
extensively studied in various domains in Euclidean space [19, 26, 36, 39, 40, 45], road
network space [21-23, 25, 29, 31], and obstructed space [14, 27, 28, 41, 44].

The concept of k nearest neighbors (kKNN) is an extremely versatile concept which is
applicable in many spatial problems. The kNN query finds the k nearest points with respect
to a query point based on a given similarity measure. In the past, numerous algorithms [36,
39, 40] have been proposed to solve the kNN problem in Euclidean space. Most of these

@ Springer

Geoinformatica

algorithms assumed that the data objects are static, and used tree-based (e.g., R-Tree) struc-
tures (or their extensions) to enable efficient query processing. This problem is also a well
studied topic in road networks [21, 29], where the distance between a query point and an
object is computed in terms of road network distance.

However, in an obstructed space, the distance between two objects can be affected by
obstacles. Many variants of kNN queries have been proposed in obstructed space, which
include the Obstructed NN (ONN) query [44, 49], the Visible NN (VNN) query [27, 28],
the Continuous NN (CNN) query [41], the Continuous Obstructed NN (CONN) query [11],
and the Continuous Visible NN (CVNN) query [13, 14].

Given a set of data points P and a query point ¢ in a multidimensional obstructed
space, the ONN query finds k data points with minimum obstructed distances to ¢, where
obstructed distance is measured as the length of the shortest path that connects any two
points without crossing any obstacle. Zhang et al. [49] studied spatial queries in obstructed
space, and proposed efficient algorithms for the most important query types such as, range
search, nearest neighbours e-distance joins and closest pairs. In order to deal with huge num-
ber of obstacles, they maintain local visibility graphs only for the obstacles that are around
the query point ¢ and may influence visibility. Xia et al. [44] propose a solution for find-
ing the kNNs of a given query point according to the obstructed distance. They provide an
algorithm to prune irrelevant query points and obstacles by starting with a local workspace
and introducing obstacles relevant to the query point incrementally.

Nutanong et al. [27, 28] employed the Visible Nearest Neighbors (VNN) search to com-
pute the NN visible to a query point. The basic idea is based on the fact that a farther object
cannot affect the visibility of a nearer object and thus, this method performs the NN search
and checks its visibility condition incrementally. Later they also provide a variant of VNN,
the Aggregate VKNN (AVANN) query, which finds the visible £ nearest objects to a set of
query points based on an aggregate distance function [28]. They first proposed an approach
that accesses the database via multiple VKNN queries. In order to improve the performance
of this approach, they proposed an alternative solution that issues an aggregate kNN query
to retrieve objects from the database and then re-rank the results based on the aggregate
visible distance.

Tao et al. [41] introduce the Continuous Nearest Neighbor (CNN) query, which
finds the kNN for a moving query point. Later, Gao et al. [11] studied a variant of
the CNN query in the presence of obstacles, called the Continuous Obstructed Near-
est Neighbor (CONN) query. Given a data set P, an obstacle set O, and a query line
segment ¢ in a two-dimensional space, the CONN query retrieves the nearest neigh-
bor of each point on g according to the obstructed distance. Their method handles the
CONN retrieval by performing a single query for the entire query segment. They also
provide a novel concept of control points and an efficient quadratic-based split point
computation algorithm to process only the data points and obstacles relevant to the final
result.

Similarly, the problem of Continuous Reverse kNN queries and the Continuous Visible
Nearest Neighbor (CVNN) queries in obstructed spatial databases has also been studied
in [15] and [13, 14], respectively. The CVNN retrieves the visible nearest neighbors in the
presence of obstacles. The CVNN extends the CNN [41], and CONN query [11] by taking
visibility into consideration.

All the aforementioned NN queries considers the distance or visible distance from a
query point. However, our problem requires a visibility computation rather than a distance
calculation. Therefore, the approaches used in various NN queries are not applicable in this
context.

@ Springer

Geoinformatica

2.2.1 Visibility based spatial query processing

Visibility based query processing has been a recent focus in the spatial database com-
munity due to the availability of large-scale 3D data. Existing studies in computational
geometry and spatial databases [28] regard visibility as a binary notion and assume that a
point is either visible or not from another point. However, all of the motivating applica-
tions mentioned in the introduction require visibility quantification as a continuous notion.
This quantification seems important, because a target can be visible from a number of
trajectories, but not all of the trajectories have the same coverage of the target.

Masud et al. [24] first introduced the kMVQ query, which finds k locations from a set of
query locations that maximize the visibility of a target object T in the presence of obstacles.
To address the problem of quantifying the visibility of a target object from the surrounding
area, Choudhury et al. [8] proposed a scalable technique to partition the space in a visually
meaningful way, and generate a heat-map of the space, called a VCM, that assigns a color to
each partition according to the visibility. Later, Rabban et al. [30] improved this technique
to incorporate the partial visibility of the target while constructing the VCM. Since both of
these approaches deal with the visibility of a target object from the query viewpoint, and
our problem includes computing the visibility of a target from multi-point trajectory points,
we have adopted this definition of visibility in our work.

Haider et al. [17] address the continuous version of the kMVQ query, denoted as kCMYV,
where the problem is to continuously report the k locations that maximize the visibility of
a moving target. The visibility of 7 from each query location continuously changes, and
the ranked results must be be updated. Their approach consists of a pre-processing step
which constructs an aggregated visible region (AVR) and a blocking set (BS) of the query
locations.

All previous works consider the visibility of extended objects (i.e., targets) w.r.t. the
query point, and it is not straightforward to extend the existing concept to compute the
visibility of extended objects from trajectories. Thus in this paper, we propose a compre-
hensive solution to compute the visibility of targets from trajectories in the presence of a
large number of obstacles. We compare existing techniques of visibility based techniques
and our proposed technique in Table 1 based on six features: considering different notions
of visibility (binary/non binary), computing visibility w.r.t. line/trajectory, pruning obsta-
cles, handling multiple targets (query points), handling moving query points, and ranking
of trajectories.

2.2.2 Query processing with trajectories

The increasing availability of user trajectory data have provided new opportunities for tra-
jectory based query processing in spatial database in recent period example as trajectory
simplification [48], big trajectory data management [9]. In similarity-based retrieval of
moving object trajectories, Chen et al. [5] introduced a novel distance function, Edit Dis-
tance on Real sequence (EDR) which is robust against various data imperfections and also
developed three pruning techniques to improve the retrieval efficiency of EDR. Later, Chen
et al. investigated the problem of searching trajectories that closely match a given set of
locations [7]. Given a small set of locations with or without an order specified, this query
finds the k-Best-Connected Trajectories (k-BCT) from a database such that the k-BCT best
connect the designated locations geographically. In order to achieve the efficiency, they pro-
vide a simple Incremental k-NN based Algorithm (IKNN) and some enhancement of this
approach.

@ Springer

Geoinformatica

X X X X XN

X N N X N X

X X X X XN

XX N N NN

X X X X XN

LANVY
[L1] AWDY

[¥2] OAINY

[#1 ‘€11 NNAD

[cy] dewr Ayiqrsip

[9t ‘T ‘1] uoSAjod KiqrsiA

XX X N NN

Sunyuer A10109fe1],

K1onb 3uraopy

s3a31e) o[dnnin

Surunid 9[oe)SqO

ANTIqIsIA paseq A103o0le1],

ANTIQISIA ATRUIQ-UON sonbruyoa],

sonbruyoa) paseq AIqIsia jo uosiedwo) | ajqel

pringer

NS

Geoinformatica

Several other works have also focused on finding the best historical trajectories with
custom objective functions. The Most Popular Route (MPR) by Chen et al. [6], studies
the problem of discovering the MPR between two locations by observing the trajectories
of previous users. In another work, Shafique et al. [32] propose a novel technique to find
the most popular path within an Region of Interest(ROI) from historical trajectory data by
rephrasing trajectories into smaller part and eliminating noisy points from trajectories. Gao
et al. proposed mutual nearest neighbor (MNN) query [12] that finds k nearest neighbors of
a query object from a given set of trajectories in a query time extent. Later they introduced
a constrained region (CR) in their problem and solved the constrained k-nearest neighbor
(CKNN) query and historical continuous CkKNN (HCCkNN) query on spatial region storing
historical information about moving object trajectories.

Recently, the trajectory search using personalized metrics has also been popular and
studied in several works. Zheng et al. [50] introduce the problem of efficient similarity
search on activity trajectory database. Given a sequence of query locations and a set of
desired activities for each location, an activity trajectory similarity query (ATSQ) returns
k trajectories that cover the query activities and yield the shortest minimum match dis-
tance. Shang et al. [33] propose a novel problem called User Oriented Trajectory Search
(UOTS) for trip recommendation, which considers both spatial and textual domains. A pair
of upper and lower bounds are maintained to restrain the search range in two domains.
In another work, Shang et al. propose a novel problem termed as personalized trajec-
tory matching (PTM) [34]. Given a trajectory with user-specified weights for each sample
point in the trajectory, the PTM query returns the trajectory in an argument data set
with the highest similarity to the query trajectory. A novel two-phase search algorithm is
proposed that carefully selects a set of expansion centers from the query trajectory and
exploits upper and lower bounds to prune the search space in the spatial and temporal
domains.

None of these approaches consider visibility based query processing for trajectories.
Thus, to the best of our knowledge, our work is the first work that integrates the concept of
visibility with trajectory based query processing.

3 Problem formulation

Let L be a set of trajectories and O be a set of obstacles in a geo-spatial dataspace. Each
trajectory [€ L is a sequence of locations [.d = {di, dy, ..., d)}, where each location
d; is represented as a tuple of (longitude, latitude). Each obstacle 0 € O has a geo-spatial
position and extent (line, rectangle, polygon) in the n-dimensional space.

Each trajectory / € L is optionally associated with a weight /.w (denoting the preference
of the trajectory), where the value of /.w depends on the application. For example, the length
of the trajectory or the distance of the trajectory from a specific location can correspond to
the weight of that trajectory.

Definition 1 Given a set L of weighted trajectories, a set O of obstacles, an aggregation
function f, a positive integer k, a set T of target objects, and an associated preference vec-
tor P, a kAMVT query returns a set L’ of k trajectories from L that provide the maximum
visibility of 7', where the visibility of the target objects are aggregated by function f accord-
ing to the preference vector P. Specifically, for any trajectory I € L’ and any trajectory
' e L\L', V(T,1) > V(T,l’), where V(T, 1) denotes the aggregated visibility of T from
the trajectory .

@ Springer

Geoinformatica

An example aggregation function is the summation of the visibility of each target, where
P corresponding to the preference for each target object in 7':

V(I.D=lwx Y px VD
teT
Here, a higher value of [.w contributes to a higher value of V (T, 1). If the weights of the
trajectories are not specified, we consider equal preference for each trajectory. The value of
each p; € P is between [0, 1] such that)", p; = 1.

4 Preliminaries

In this section we present the visibility computation of a target object from a point location
as commonly done in the existing literature. As each side of a target is a line in 2D space
(face in 3D), without loss of generality, we explain the visibility quantification for a line as
the geometric shape in this section.

Previous studies [24, 30, 47] have defined and used different metrics to quantify visibil-
ity. The metric, called “visual angle” [24] is the angle formed at the eye level of a user by
the extremities of an object viewed, which determines the perceived length of that object.
Figure 2 describes this visual angle and we adopt this metric as the measure of visibility
in this work. Specifically, the visibility measure of a target ¢ from a point location d is

computed as:
V. d) = 2 arctan(PL(z, d)) 0
180
where the maximum possible visual angle is 180°, which is used to normalize the value of
V(t, d) between [0,1], and PL(¢, d) is the perceived length of 7 from d.

In an unobstructed space, the perceived length of an object mainly depends on the dis-
tance and the viewing angle between the user and the object. If an object is viewed from an
oblique angle, the perceived length of that object becomes smaller than the original length.
The perceived length of ¢ also decreases with the increase of the distance between ¢ and the
point location d.

Let the straight line connecting the midpoint of the target ¢ (which is a line) and the point
location d creates an angle Z(¢, d) with ¢. Let the minimum distance of target ¢ and the
point d be dist(z, d). Then the perceived length of a ¢ from d is measured as:

Z(t,d) len(t)
90° * dist(r, d)
Figure 3 shows an example scenario of calculating simplified visibility for a target. Let ab
be a trajectory segment with midpoint ¢ and ¢ be a target line of length 10 units. Assume the

PL(t,d) = (2

Fig.2 Computing the visibility +
from a point location

len(t)

dist(t,)

5

@ Springer

Geoinformatica

Fig.3 The visibility of a target
from a line segment

minimum distance of ¢ from points a, b, ¢ is 20,15,10 units, and the angle between the points
and the midpoint of ¢ is 90°, 60°, 30° respectively. According to Eq. 2, the perceived length

of ¢ from point a is measured as PL(¢, a) = 882 X % = 0.5, and the visibility measure of
2 arctan(0.5)

t is computed as V(t, a) = =180 = 0.295. Similarly, we can compute the visibility
of ¢ from b and c, and the simplified visibility of target ¢ from trajectory segment ab is
measured as sim_vis(ab, 1) = YEOTVEDEVEA — (295 4 0.266 + 0.205)/3 = 0.253.

5 Our approach

Without loss of generality, we now consider each obstacle 0 € O as a rectangular object
(rectangular cuboid in 3D) in the data space. The set T of target objects is a query input
where each target is also a rectangular object in a data space. The set L of trajectories and
the set O of obstacles are stored in separate R-trees [16], where each trajectory I € L is
represented as the Minimum Bounding Rectangle (MBR) of the points of / in the leaf-level
entries of the tree. A pointer to the actual trajectory data is associated with the corresponding
leaf level node.

Our objective is to find the top-k trajectories from L that provide the best visibility of T’
based on the effect of the obstacle set O. As there is no prior work that addresses the visibil-
ity computation of an object from a continuous sequence of line segments (trajectories), first
we present a novel trajectory partitioning approach to compute visibility from trajectories.
Then we present a straightforward approach to answer the xAMVT query. In Section 5.3,
we present an advanced approach that computes the results of kAMVT by applying several
obstacle pruning, trajectory pruning, and target pruning techniques. For ease of presenta-
tion, we ignore the weights of the trajectories in the details of the approach presented in
this section. Later in Section 5.5 we present how different weights of the trajectories can be
incorporated into the solution.

We need to find top-k trajectories from L which provides the best visibility of those
targets considering the effect of an obstacle set O. The notation used throughout the paper
along with the definitions is listed in Table 2.

@ Springer

Geoinformatica

Table 2 Notation and definitions

Notation Definition

T Set of target objects

ti A specific target object

[0} A specific side of the target where w € {up, down, left, right}

L Trajectory dataset

L; Set of trajectories that are inside the visibility range of target ¢

l; A specific trajectory

d; The i-th data point of a trajectory

St(w) The segments that are associated with the specific side w of the target ¢
o obstacle set

O; Reduced obstacle set associated with target ¢

0; A specific obstacle

S§SU;i. t)) Set of segments of trajectory /; that are inside the visibility range of the target ¢;
(si, fi) Starting and finishing point of trajectory /; inside the visibility range

P Prefereance vector associated with target set

k Total number of trajectories required

5.1 Visibility computation of a target from a trajectory

Here, we discuss how to calculate visibility of a target with respect to a trajectory. Human
vision for any given target is limited to a certain range. The visibility decreases as the dis-
tance between a viewpoint and a target increases. Therefore for each target, we consider a
circular visible range (spherical in 3D) with the assumption that, any obstacles or trajecto-
ries that are outside of the visible range have no effect in computing the visibility of the
target.

Specifically, visibility pruning has the following logical steps: (i) For a target ¢ and and
a trajectory /, we identify the segments of / from which ¢ are visible. If ¢ is partially visible
from any part of a segment of /, that segment is further partitioned in a visually meaningful
way such that the same portion of ¢ is visible from each such partition (we call such partition
a slice). (i1) The visibility of ¢ from such a partitioning should be the average visibility from
each point of the slice. However, as the same portion (or a segment) of ¢ is visible from
every point of that slice, we can compute that segment’s visibility from a limited number
of points of the trajectory partition without any loss of accuracy. (iii) As the same segment
of ¢t can be visible from multiple slices of a trajectory /, for each segment of 7, we find the
slice of [that provides the maximum visibility. This value is the visibility for that segment
of ¢t from /. (iv) Finally, the summation of the visibility for each segment of ¢ is the total
visibility of ¢ from /. We discuss the details of the steps in the following.

5.1.1 Finding the necessary segments of trajectory
A trajectory consists of many segments, but we only need the segments that are inside the
visible range. Therefore, we first determine the terminal points (s;, f;) of trajectories, and

then divide the trajectories into four groups, up, down, left, right, based on their relative
position from the target.

@ Springer

Geoinformatica

Visibility of the target is the aggregation of the visibility for the up, down, left, right sides
of the target. We extend the target line and take the segments inside the region created by
the intersection of the target line and visible range. Moreover, if the target line intersects
any trajectory segment then the segment is divided into two parts and only the subsegment
inside the region is considered.

Let us consider target #, and the associated trajectories /1 and /, in Fig. 4. After taking the
segments of the trajectories inside the visible range, we have the set of trajectories L;, C L
associated with ;. We need to divide it into four sets of segments Sy, up), Sty down)» Sta (lefr)»
St, (right)> €ach associated with a specific side of the target.

We now determine the set of segments for each trajectory with respect to the target #,.

SS(y, 1) {s1d, de}
S8, 1) = {s2f.fg}
SS(3, 1) = {}

Since /3 has no segment inside the visibility range of #,, we need to compute the visibility
of 7, with respect to /; and /; only, and thus L;, = {l1, l5}. In Fig. 4, for upper side of the
target, we extend the target line X, and only take the segments that are inside the upper
side of X,, and the visibility range.

Sthup) = {s1d, de}

Using the same process, we can also find the down, left, and right side group of the
trajectory segments.

5.1.2 Trajectory partitioning by obstacle projection

To compute the visibility we need to find a continuous portion of the target that is visible
from a segment or some portion of it. Thus, the key intuition of trajectory partitioning is
to divide the trajectory into different equi-visible subsegments (slices) such that the same
subsegment of the target is visible from each point of an equi-visible slice.

We first discretize the target by taking equidistant boundary points on each side of the
target. Then we take the projection from each boundary point of the target with respect to
each obstacle. These projections divide the trajectory segments into different equi-visible
slices.

Fig.4 Segments inside different
side groups

@ Springer

Geoinformatica

From each equi-visible slice of the trajectory, we compute the visibility of a continuous
portion of the target, which is the line connecting two or more boundary points that are
visible from the slice.

Finally, we compute the visibility of the target from the entire trajectory segment. We
summarize the trajectory partitioning process as follows.

Consider the example shown in Fig. 5, where the target object is 71, and the obstacle
is 01. Two segments ab and bc of #; are at the up side of the target. Here, we have three
boundary points, by, b>, b3 on the up side of target. When there are no obstacles, all the
boundary points are visible from both segments. Therefore, we initialize the count of the
number of visible points (also referred to as the visibility count) for each segment to 3.
Now, we take a projection from boundary point b; with respect to obstacle o;. Since ab
is completely outside of the projection area, its visibility count does not change. However,
the projection for b; intersects the segment bc at two points e; and ey, which divides the
segment into three slices bep, ejez, and exc; thus we update the visibility count in each
slice. In this case, the visibility count of ejey is now 2. We repeat the above process for

STEP 5 STEP 6

Fig.5 Projection for a boundary point on trajectory segments are shown in Steps 1-4

@ Springer

Geoinformatica

the other two boundary points: b, and b3. We get a set X, = {aes, esea, eseq, egb} of
equi-visible slices for the segment ab, where each slice is associated with visibility count
denoting the number of boundary points that can be seen from the slice. Similarly, we get a
set Xpe = {beq, e1e3, ezen, exc} of equi-visible slices for the segment bc.

When one equi-visible slice has visibility count greater than 1, we connect those bound-
ary points to have a target line segment, and compute the visibility of the line segment from
the slice. However, if an equi-visible slice has a visibility count of exactly 1 — one boundary
point is visible from the slice — then we project back from the cell onto the target, and find a
target line segment that is visible from the slice. Figure 5 (Step 5) shows an example, where
eseq has a visibility count of 1, and one boundary point, b; can be seen from this slice. After
projecting back from the slice, we get a target line segment b1’ , and compute the visibility
of this line segment from e4eg.

So far we have computed the visibility of a portion (or segment) of the target from dif-
ferent slices of the trajectory. However, it is possible that the same portion of the target is
visible from different slices of the same trajectory. Thus, if we sum up the visibility values
of all slices to get the total visibility of the target from the entire trajectory, then the visibility
of the same slice can be counted more than once for a trajectory. To avoid this, we first dis-
tribute the visibility value or score of a target line segment (w.r.t. a trajectory slice) among
its boundary points, and for each trajectory slice we maintain a score list of all boundary
points. Then, when we sum up the visibility scores of each slice, we only count the score of
a boundary point once for the slice where the boundary point gets the maximum score.

Algorithm 1 vis_seg(s, t, w).

Input : A target ¢, w a specific side of ¢, s a trajectory segment
Output: Visibility score list and total visibility score of ¢ with respect to segment s for
that side
X5 < GetSegmentParts(s, t, w)
X, <« Sort(X;)
Initialize computed visibility V = 0
Initialize score list & = [0, 0, ..., 0]
foreach slicex € X do
Initialize score list for slice &, = [0, 0, ..., 0]
B, = GetVisiblePoints(x)
S; = CreateLinesFromPoints(By)
foreach linet’ € S; do
v =sim_vis(x, t')
&, = UpdatePartScoreList(&,, PointsIn(t), v)

LI B N N L

— -
L]

12 end
13 & = UpdateScoreList(&q, &)
14 end

15 V= Z(gs)

16 return (&, V)

Algorithm vis_seg(s, t, side) summarizes the visibility computation of target ¢ for side @
with respect to a trajectory segment s. After taking the projection from each boundary point,
the segment s is divided into a set X of equi-visible slices. Then we sort X according to
the number of visible boundary points n, for slice x. We iterate each slice x in X, and
initialize the score list of boundary points for the slice, &, as zeros. For each slice x, we then
form the line segment ¢’ by connecting all boundary points visible from x, and compute the

@ Springer

Geoinformatica

corresponding visibility sim_vis(x, ') as defined in Section 4. After that we update score
list &, of slice x. The score of i-th boundary point for slice x is defined as follows.

0, ifb; ¢t ,wheret' € S,

=1
Exlil { 7”’”3(“), ifb; €t , wheret € S,

Here, w is the normalization factor, which is used to equally distribute the visibility score
of a target line to its boundary points. When more than one adjacent boundary points are
visible from a trajectory slice, w represents the number of boundary points that form the
line segment t’. However, when only one isolated boundary point is visible from a trajectory
slice, then we calculate w differently. Let |x| be length of the visible portion of the target
and |b| be the length of two initial equi-spaced boundary points on the target. Then, the
weight, w is defined as 1 + %, which basically normalizes the visibility score uniformly
among the boundary points of the visible portion of the target.

After iterating over all equi-visible slices of the trajectory segment, we compute the score
list & of the segment s, where the score of i-th boundary point for segment s is computed

as follows:

&lil= ﬂa}é@x [i]).

Finally, the algorithm returns the visibility score V of target ¢ of a given side with respect
to segment s as V = Zi &[i]. Consider a segment s is divided into a maximum number of
ny slices i.e., | Xgy| = ny. Then sorting X will take &'(n, logn,). For each slice x, getting
visible points and create line from points can be conducted in linear time. However, there
will be maximum % individual lines that are visible in a specific target side and updating
score list will take &'(n,) time. Since number of boundary points considered in this problem
is a constant and b << n,, it will take &'(n,) to update the score list for each slice in Xj.
Therefore, the run time of Algorithm 1is & (ny logny) + O(ny) * O(ny) =~ ﬁ(ni).

The steps of the visibility computation for target #; w.r.t. trajectory segment ab (Fig. 5)
is demonstrated in Table 3. For each slice, we first find the visible boundary points of
the target, and compute the visibility of the target line segments. Then, we distribute the
visibility score to the boundary points of #; according to a normalization factor w, and get
the score list for slice x.

In our example, all the three boundary points (b1, by, b3) are visible from slice aes and
the visibility score for target line b1b3 is assumed to be 0.75. The normalization factor, w
for slice aes will be 3, which is the number of visible boundary points from the slice. Then
the score for each visible boundary point is computed by dividing the visibility score, 0.75,
by the normalizing factor (w), 3, and the total score list is updated to [0.25, 0.25, 0.25]. The
visibility computation for the slice esey4 is done similarly with two adjacent visible boundary
points by and b5.

On the other hand, only one visible boundary point by is visible from slice eseq (Row 4 of
Table 3). In this case, we have to first determine the target line segment b1 by, where 0.6 be

Table 3 Visibility computation for a trajectory segment ab

Slice Visible points Visibility score w Score list for slice Score list for segment
aes by, b2, b3 0.75 3 [0.25,0.25, 0.25] [0.25,0.25, 0.25]
esey by, by 0.60 2 [0.30, 0.30, 0] [0.30, 0.30, 0.25]

ech by and b3 0.40, .20 1.2, 1.1 [0.167, 0, 0.18] [0.30, 0.30, 0.25]
eqeq by 0.60 1.6 [0.375, 0, 0] [0.375, 0.30, 0.25]

@ Springer

Geoinformatica

the visibility of score of the target line from eseq. The normalization factor w is computed
as 1.6, and the visibility score of by is updated as 0.6/1.6 = 0.375. Similarly, two isolated
boundary points b; and b3 are visible from slice egb. So, we have to first determine the
visibility for two separate line segments, for both target lines containing b and b3. Here,
0.4 and 0.2 are the visibility scores for these two segments, respectively. The normalization
factors for these target lines are computed as 1.2 and 1.1, respectively. Therefore, scores for
b1 and b3 are updated as 0.4/1.2 = 0.167 and 0.2/1.1 = 0.18, respectively and the visibility
score for by is updated to O as it is not visible from slice egb.

Finally, we update the score list for segment ab (last column of Table 3), where each
boundary point gets the maximum score from score list of all slices. At first, the score
list for trajectory segment ab is initialized as &,;, = [0, 0, 0]. After calculating the score
list ([0.25, 0.25, 0.25]) for slice aes, &, is updated as [0.25, 0.25, 0.25]. For slice ese,
the score list is [0.30, 0.30, 0]. Thus, the visibility scores for b; and b; are only updated,
and the new visibility score list for the segment is &,, = [0.30, 0.30, 0.25]. We continue
this process for the rest of the slices, and the final score list for trajectory segment ab is
E.p = [0.375,0.30, 0.25]. Therefore, the visibility score for target #; w.r.t trajectory segment
ab is defined as V = 0.925.

To compute the visibility score of the entire trajectory /, and for a specific side w, we
define the score of the i-th boundary point for trajectory / as the maximum of all segments
of that trajectory which are inside in that specific side group.

&lil = (&liD)-

max
S€SSU,ONS; ()

Thus, the visibility score of trajectory / for side @ can be computed as [.visibility[w] =
>_;(&Ii]). Finally, the total visibility of 7 with respect to / is the aggregation of visibility for
all sides in ¢, which is

vis(l, 1) = Y _ Lvisibility[w]

In our example, we can compute the visibility of target #; w.r.t the trajectory segment bc
using the same process as ab. Let the computed score list for bc be &, = [0.27, 0.40, 0.35],
and the score list for ab be &,, = [0.375, 0.30, 0.25] as demonstrated in Table 3. Then, the
score list w.r.t. to the entire trajectory /; is defined as &, = [0.375, 0.40, 0.35], and the total
visibility value of the upper side is /1.visibility[up] = 1.125.

5.2 A straightforward approach

In case of multiple targets, i) this approach processes each target sequentially, ii) retrieves all
trajectories and obstacles inside the visible range of the target, iii) computes the obstructed
visibility of the target with respect to the trajectories, and iv) outputs the top-k trajectories
combining all targets as a result of tAMVT query.

Although this method provides us the desired solution, it considers all trajectories and
obstacles within the visible range. Thus the straightforward approach leads to several com-
plexities: i) The computational cost will be excessive. ii) Many trajectories and obstacles
present inside the visibility range have no significant effect on the visibility of the targets.
Therefore, considering all of them will be unnecessarily expensive. iii) the computational
cost will increase as the number of targets increases.

@ Springer

Geoinformatica

5.3 Proposed approach

In order to decrease the computational cost, we propose an advanced approach that includes
some efficient pruning mechanisms which greatly reduce the number of obstacles and
trajectories for both single and multiple targets. The steps of our proposed approach are
explained in the following subsections.

5.3.1 Determining a reduced obstacle set

A major challenge in our problem is to manage the huge obstacle set associated with each
target object. Thus, we need a method to prune out the obstacles which do not affect the
visibility calculation, and find a reduced obstacles set O, for target ¢ where, O; C O.

The obstacles are retrieved from an R-tree in increasing order of distance from the target,
since we assume that closer obstacles have a higher chance of blocking the view. Moreover,
an obstacle outside of the region covering all trajectories can not block the view of target.
For each target, a Trajectory Segmentation Range is defined as the MBR with a minimum
extent that encloses all trajectories inside the visible range of the target.

At first, we initialize the reduced obstacle set O, = ¢ for target 7. Then, we start from
the obstacle which is nearest to the target, and continue up to the Trajectory Segmentation
Range by increasing the distance of the obstacle from the target. The main intuition is that,
an obstacle, or a whole MBR shadowed by other obstacles retrieved already has no effect
on target. Therefore an Invisible Range is maintained. We define the Invisible Range of an
obstacle as the area inside the Trajectory Segmentation Range which is shadowed by taking
the projection from the target to that obstacle. Initially /nvisible Range is empty. Whenever
a new obstacle is inserted into O;, we take projection of the obstacle from the target and the
Invisible Range is updated. The following lemma is used to prune out an obstacle that does
not need to be retrieved from the R-tree.

Lemma 1 Let o be an obstacle in the Trajectory Segmentation Range of a target t. The
obstacle o can be safely pruned if it is completely inside the Invisible Range, taken from t
to all obstacles o' that have been retrieved so far, Yo' € O,. If a whole MBR in inside the
Invisible Range, then all obstacles inside it can be safely pruned.

While calculating visibility for a specific side of the target, we need to find a projection
for the obstacles that are between that target side and the Trajectory Segmentation Range.
Therefore for each side w, we need to find a subset of obstacles Oy 4, from O;, where each
obstacle o € O, are associated with that side.

An example scenario is illustrated in Fig. 6 with the target ¢; and segments ab, bc,
¢f . The provided obstacle set here consists of five obstacles, O = {01, 02, ..., 0s}. For
simplicity, only the upper side of the target #; is considered.

The first retrieved obstacle here is 01 since it is the closest one to #1. Then o0, is retrieved
and inserted in Oy, . The next obstacle o4 is not retrieved because the position of o4 is left of
the leftmost extreme point a, and therefore outside of Trajectory Segmentation Range. The
next obstacle o3, however, is completely shadowed by the obstacle o1, and is therefore not
retrieved. The obstacle o5 follows, and is above the uppermost point b and so need not be
retrieved. As a result, the reduced obstacle set obtained here is O;, = {01, 02}.

An obstacle cannot effect the visibility of the segment if it is completely outside the
visibility region of the target with respect to that segment. This visibility region is formed
by joining the end points of the segment and the target side. In the reduced obstacle set, o

@ Springer

Geoinformatica

Fig.6 Obstacle retrieval for a P
target Phe I:I RN
7 b N
’ ’ Os N .
’
I/ a E103 c f1
I:lO \
) i
t

is inside the visible region of ab but o; is outside. Thus, we need to calculate the visibility
of ab only with respect to obstacle 0.

5.3.2 Trajectory pruning for a target

In this section we demonstrate the process of trajectory pruning with respect to a single
target. In order to facilitate pruning, we also maintain an upper and lower bound on the
visibility of individual trajectories to compare these values with a global lower bound.

Upper bound: The upper bound on the visibility of a trajectory / is the maximum vis-
ibility that / can provide, denoted by /.ub. For each trajectory, the simplified visibility
without obstacles is calculated, which is the initial upper bound. For a trajectory [, the
initial upper bound is [.ub = sim_vis(l, t) and [is considered as a geometric line inside
the visible region of 7.

Lower bound: The lower bound on the visibility of a trajectory / is the minimum visibil-
ity the trajectory can provide, denoted by /./b. The lower bound is initially zero, which
indicates the worst case scenario. If visibility has been computed for a portion of a trajec-
tory in the presence of obstacles, then this is the lower bound on visibility. We assume in
the worst case scenario that the target will not be visible at all from the remaining portion
of the trajectory.

We can consider the upper bound as the aggregation of the visibility for the computed
slice and the simplified visibility for the remaining slice. In the best case scenario, there will
be no obstacles, and the visibility obtained is equal to the simplified visibility. It is evident
that, with each iteration, the upper bound will decrease, and the lower bound will increase.
The upper bound can be updated according to the following lemma.

Lemma 2 Let [be a trajectory. If the visibility has been computed for a portion x in | with
respect to a target t, and x' is the remaining slice, then l.ub = vis(x, t) + sim_vis(x', t).

In Lemma 2, the update of [.ub can be simplified by another equation using algebraic
manipulation since the former will be computationally intensive if the number of segments
associated with the slice x’ is huge. Let [.ub" be the previously computed upper bound of /
and we calculate visibility for portion x of /. Then we can derive the new upper bound /.ub

@ Springer

Geoinformatica

by simply taking the difference between the simplified visibility and actual visibility of x
from the previous upper bound. Then the update equation becomes,

lub = lub — (sim_vis(x, t) — vis(x, 1))

The lower bound can be updated using to the following lemma.

Lemma 3 Let [be a trajectory. If the visibility has been computed for a slice x in [with
respect to a target t, then l.Ib = vis(x, t).

Now, we can use this upper and lower bound to prune trajectories, by maintaining a
global lower bound LB. It is defined as the lower bound on the visibility among the top-k
trajectories inside the visibility range of 7. The global lower bound is also initialized as zero
and updated accordingly. For any trajectory, if the upper bound is smaller than the global
lower bound, then it can be pruned. This indicates that the trajectory, even in the best-case
scenario, will provide worse visibility than the trajectories those are already in top-k list.

Lemma 4 Let t be a target t and | be a trajectory. If LB is the global lower bound with
respect to t, then | can be pruned if the following condition holds: l.ub < LB.

Consider the example illustrated in Fig. 7, where we consider the downward direction
from the target. Here, #; is the target object, and [, is the trajectory being considered, which
has three segments s1, 57 and s3, and the trajectory /3 has two segments s4 and ss.

Initially, the upper and lower bound for /5 are determined. Then the visibility for the the
segments sy, s2, and s3 are computed in that order, according to the distance from the target.
Now, the upper bound />.ub, lower bound /,./b and global lower bound LB change according
to Lemma 2 and Lemma 3.

Now, segment s4 of I3 is considered. After defining the upper and lower bounds of /3,
we check the pruning condition for s4 according to Lemma 4. If the condition holds, we
can safely conclude that even the best-case visibility provided by I, will be worse than
the trajectories we have considered beforehand. Thus, /3 can be pruned. Otherwise, the
computation continues.

5.3.3 Processing kAMVT query for single target

Algorithm 2 takes a specific target ¢, its associated trajectory set L;, and the obstacle set O
and returns a list R containing top-k trajectories with maximum visibility for target ¢.

Fig.7 Pruning trajectories based
on upper and lower bounds tl

@ Springer

Geoinformatica

Algorithm 2 kMVT(k, t, L;, O).
Input : Items returned, k, target object 7, a trajectory set L, associated with ¢, an
obstacle set O

Output: A list R of k trajectories in decreasing order of visibility

Initialize R = @, LB =0

foreach side w do

| S = DivideSegments(t, L;, ®)

end

foreach Trajectoryl € L; do
Initialize [.Ib = [.total vis = 0, l.ub and [.visibility[w] = 0 for each side w
Initialize & = {0, 0, .. ., 0} for each side w.

end

O, = Retrieve_Reduced_Obstacle_Set(t)

foreach side w € {up, left, down, right} do

o e 9 N AR W N =

—
=

1 O;.o» = Get_Specific_Side_Obstacles(O;, ®)
12 foreach Segment s € S, do

13 Trajectoryl = s.parent

14 if [.ub < LB then

15 | continue

16 end

17 foreach Obstacle o € O; ,, do

18 if o is outside of visible region of s then
19 | continue

20 end

21 foreach boundary point b of target line do
22 | s = Modify_Segment(s, b)

23 end

24 end

25 (&, Vi) = vis_seg(s, t, w)

26 Update [./b, l.ub and LB

27 &=UpdateScoreList(&], &)

28 Lvisibilitylw] =) (&)

29 UpdateVisibility(l) and Insert(R, 1)

30 end

31 end

32 Return first k trajectories from R

Here, we maintain the priority list of trajectories R, in decreasing order of visibility and
a global lower bound LB. At first L, is divided into four groups associated with each side
(Lines 2-4). Each §,, contains segments associated with that side sorted according to their
distance from that side. Then the upper bound [.ub, lower bound /.lb, and the total visibility
of each trajectory associated with the target total_vis are initialized. The visibility score and
the visibility score list of the target boundary points for each side of the target are initialized,
for every trajectory (Lines 5-8). Finally a reduced obstacle set Oy is retrieved from the R-tree
as described in Section 5.3.1 (Line 9).

For each side w of the target, we take a subset of obstacles O; ,, that are associated with
that side (Line 11). Then for each segment s, we check the pruning condition according to
Lemma 4. If this condition holds, this trajectory can be pruned (Lines 14-16). Otherwise

@ Springer

Geoinformatica

we iterate over all of the obstacles in O, and check if an obstacle affects the visibility
of the segment. If not, we can ignore the obstacle (Lines 18-20). Otherwise, we calculate
the effect of projection of that segment for each boundary point according to Section 5.1.2
(Lines 21-23).

After iterating all obstacles for a segment, we compute the visibility score list &, and
also the total visibility score V; for the segment, according to Algorithm 1 (Line 25). The
upper bound, lower bound, and LB are updated according to Lemma 2 and Lemma 3. We
also update the visibility score list for the trajectory, &, as mentioned in Section 5.1.2 (Line
27). We then use & to compute the visibility score of the trajectory for the side @ (Line 28).
Next, the overall visibility of the trajectory is updated, and the trajectory is inserted into
the list R accordingly. If the trajectory is already in R, its visibility value is updated and its
position in the list changes (Line 29). Finally, we return the top-k trajectories from R as the
desired output (Line 32).

The run time of Algorithm 2 in worst case would be similar to the straightforward
approach with no pruning method. But all these efficient pruning mechanism significantly
reduce the run time in real scenario that we discuss in Section 6.

Proof of correctness We now show that Algorithm 2 finds the list of top-k trajectories with
respect to a given target. For this reason we have to prove following two statements.

(i) First, k trajectories in R provide better visibility than rest of the trajectories in R.
(i) Whenever a trajectory is pruned, the visibility will be less than the visibility of the k-th
trajectory in R.

The output list R is a priority list based on the value of the visibility score, vis(/, t).
Here vis(l, t) is the visibility of the target ¢ with respect to trajectory /, considering all sides
of t. So vis(l,t) = Zw L.visibility[w], as defined in Section 5.1.2. As a result, whenever
a trajectory is inserted into R, it will not disrupt the order of visibility. So statement (i)
remains valid for any scenario.

For the second statement, the global lower bound LB is updated in each iteration, where
LB is the value of lower bound of k-th trajectory in R. Whenever the iteration is over,
vis(l, t) of a trajectory [will be equal to its lower bound /./b. Moreover, the upper bound
of the trajectory signifies the maximum visibility that the trajectory can provide. So at each
iteration, we have the following fact for any trajectory /:

1.Ib <vis(l,t) <l.ub

Let [be a trajectory that is being pruned, and !’ is the k-th trajectory in R. So the global
lower bound LB = [’.Ib. According to the pruning condition,
Lub <1l'.Ib
=vis(l,t) < Lub <1'.Ib <vis(l', 1)
= vis(l, 1) < vis(l', 1)
It is evident that [will not provide better visibility than the k-th trajectory that has been

achieved already. As a result, the statement (ii) is indeed true. Therefore our proposed
solution will return the top-k trajectories with best visibility for the given target.

@ Springer

Geoinformatica

5.4 Visibility computation for multiple targets

In this Section, we provide an efficient mechanism for visibility computation considering
multiple targets. We use total visibility V (T, [) as the scoring function of each trajectory /
which was defined in Section 3. Evaluating this score for all trajectories while finding the
top-k, would incur huge computational costs. Therefore, we propose additional optimization
techniques for multiple targets, and a target ordering technique. This helps prune away many
trajectories, and in some cases, a target instantly. Finally, we provide an algorithm for the
kAMVT query.

5.4.1 Target ordering technique

In the initial step, the target which has the highest number of trajectories inside its visible
range is selected.

After the computation is done for initial target, we pick the first trajectory in the top-k
list found so far, and consider the target which has / inside the visible range. If there are
multiple such targets, the one which has the highest number of trajectories inside its visible
range is picked.

As k trajectories are required, preference is given to targets which already have higher
ranked trajectories inside the visible range.

If all targets that have / inside their visible range have been considered, the next trajec-
tory in the top-k list is processed. If no such trajectory can be found in the top-k, then we
choose the unevaluated target that have a higher number of trajectories, or trajectories with
an aggregated higher weights (preferences).

5.4.2 Trajectory pruning for multiple targets

For each trajectory, an expected upper bound on its visibility is maintained to facilitate
pruning.

Expected upper bound: The expected upper bound of a trajectory [is defined as the
maximum visibility that / can provide, considering every target, and is denoted by
l.expected. We initialize the expected upper bound with |T| x max_vis, where |T| is
the total number of targets in 7 and max_vis is a predefined maximum visibility of
a target with respect to a trajectory. Updates can be managed using the following
lemma.

Lemma 5 Let [be a trajectory, if l.vis is the total visibility computed so far for n' targets
in T, then the expected upper bound of I, l.expected = l.vis + (|T| — n’) x max_vis.

For each trajectory /, we compare its expected visibility with the minimum total visibility
and prune if needed.

Minimum total visibility: The minimum total visibility, denoted by min_total_vis, is
defined as the total visibility /.vis of the k-th top trajectory / that has been found so far.

@ Springer

Geoinformatica

If the expected visibility of / is less than minimum total visibility, then / will not dis-
rupt the ranking of top-k list found so far, and can be pruned. The pruning condition for
trajectories is as follow.

Lemma 6 Given a trajectory 1, if l.expected is the expected maximum visibility of | , and
min_total_vis is the minimum total visibility, then | can be pruned if the following condition
holds: l.expected < min_total _vis.

5.4.3 Target pruning

If Lemma 6 holds for all trajectories inside the visibility range of ¢, then ¢ can be eliminated
from computation altogether. This signifies that no trajectory inside the visible range of ¢
can ever surpass the visibility of the k-th top trajectory found so far.

Let us consider the example scenario illustrated in Fig. 8. Here, the targets are #; and #,,
the trajectories are /1, 2, and /3 and the obstacles are 01, 02, ..., 07. We want to find the top
most trajectory (k = 1) with maximum visibility for all targets. Now, the trajectories inside
the visible range of the targets are, L, = {l1, 12, [3} and L;, = {I1, [5}

In the example, we maintain a priority list of targets T’ = {t1, 1}, since #; has the maxi-
mum number of trajectories inside the visibility range. Therefore, Algorithm 2 is processed
for #1 at first and the result is {/>} since the trajectory [, is less obstructed. This is inserted
into the resultant list of top-k trajectories R, and thus, R = {l,}, and ¢ is removed from 7’.

Now, while choosing the next target, it can be seen that /> has the highest visibility, and
thus we consider the other target that has /5 in its visible range and is higher in the priority
list 77, so we choose ; next, and remove it from 7’. Since L;, = {l1, I}, if the expected
upper bound of /; is less than min_total_vis, then we can simply prune out /;. Thus, for target
12, the returned trajectory will be /> and we get our resultant list R = {/,} as the result of the
kAMVT query.

5.4.4 Selecting candidate trajectories w.r.t. a target

In this section, we propose a heuristic to determine the number of trajectories that needs
to be accessed w.r.t. individual target, which are potential candidates for the top-k list
for the kAMVT query. Later, we present a Lemma that defines an upper bound visibility
score based on the already retrieved trajectories for checking the eligibility of remaining
trajectories.

Fig.8 Visibility measurement e T T

- S -
for all targets e (| So-T S
“ 05 N AN
4
, 1 |:|O3 N AN
/ \
/ O ’ N
) 0y R o R
| Oa I’ 0, | %% \
I‘ t h . . ‘]
| 2
\ 1, \ /I I
\\ \ , 1
7
\
N oy W K

@ Springer

Geoinformatica

Accessing top-k trajectories for each target and then combine the top-k lists of all targets
do no guarantee the top-k results for the xfAMVT query. One possible approach can be to
access top k” trajectories, where k” >> k, for each target and then combine these trajec-
tories to get the final top-k. This approach results in un-necessary accessing of trajectories
that cannot be a part of the answer. Thus, we provide a heuristic to determine the number
of trajectories, k’ that needs to be accessed for selecting initial set of candidate trajectories
w.r.t. each target.

We first explain the concept using an example as shown in Fig. 9. In this figure, [.vis is
the visibility score for trajectory / that has been computed so far, [.expected is the expected
upper bound of / that can be achieved. A trajectory / can be included in top-k list if its
visibility score /.vis exceeds min_total _vis. Let L; be the set of trajectories that are inside
the visible range of ¢ and cannot be pruned according to Lemma 6. [.expected and [.vis are
the average expected upper bound and the average so far computed visibility score of all
trajectories in L;, respectively. Let us assume that £’ be number of trajectories that may be
the potential candidates for the final top-k list of the xAMVT query. Thus, according to the
unitary method, for target z, we define k” as follows.

X l.expected — min_total_vis

—_——— X | L]
l.expected — l.vis

For the first few targets, the value of k' will be large, as initially the value of
min_total_vis will be small and consequently the difference between [.expected and
min_total_vis will be large. As we retrieve more trajectories for successive targets, the
value of min_total _vis will increase, and also the value of [.expected will get closer to the
actual visibility score /.vis, and thereby the value of k" will be small.

However, the above heuristic for £’ does not guarantee that we access all candidate tra-
jectories for the final top-k list of the kAMVT query. To ensure that all candidate trajectories
have been accessed to confirm the correctness of the top-k answer, we provide the follow-
ing lemma. According to the above heuristic, let ké, . kl’ 7| be the number of trajectories
retrieved for targets t1, 12, ... #|7|, respectively. Let [; be the k'th trajectory of the top-k’ list
of target ¢, and vis(ly/, t) be the corresponding visibility score of the trajectory. Then, we
can get the upper bound visibility score as UB =),y vis(ly, t). An unexplored trajectory
[can still be the candidate for the top-k if the expected score, [.expected of [is greater than
the upper bound score, UB. Thus, we have the following lemma.

Lemma 7 Given a target t and a set of trajectories L, inside the visible range of t, where
VI € L;, l.expected < min_total_vis. Let R, be the list of top-k’ trajectories w.r.t. target t.
Then, a trajectoryl € L;\R; can be a candidate if l.expected > UB.

Fig.9 Visibility Range for a top-k trajectory
trajectory 'A
l.expected min_total_vis l.vis
i . i - ‘

@ Springer

Geoinformatica

5.4.5 Processing the KAMVT query

Algorithm 3 KAMVT query.

o X N N R W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
7

[

Input : Number of results, &, target object set 7', and a Preference vector of targets P
Output: A list of k trajectories in decreasing order of visibility

Initialize priority list of target T/ = @&
foreach Targett € T do
L; = RetrieveTrajectory(t)
t.preference = L, .size() * p;
T .insert(t)
end
Initialize R = @, min_total vis = 0 and UB = 0
while 7" # & do
Target t = SelectAppropriateTarget(T")
T’ remove(t)
foreach Trajectoryl € L, do
if l.expected < min_total_vis then
| L;.remove(l)
end
end
if L;.size() = 0 then
| continue
end
k' = SelectTrajectory(L,, min_total vis)
List R, = kMVT(',t, L;, O)
UB = UB + vis(R[K'], 1)
foreach Trajectoryl € R; do
Lvis = Lvis +vis(l, t) * P(t)
Update [.expected
Insert(R, 1)
end
min_total_vis = R[k].vis
end
foreach Targett € T do
foreach Trajectoryl € L; do
if] ¢ R; and l.expected > UB then
CaculateVisibility(l,t)
Insert(R, 1)
end
end

end
Return top-k trajectories from R

This algorithm takes an integer k, a target list 7 and associated preference vector P, total

obstacle set O and trajectory dataset L as input. The top-k trajectories that provide the best
visibility considering all targets in 7 are returned.

@ Springer

Geoinformatica

In order to find the top-k trajectories for multiple targets, two priority lists R and T’
of trajectories and targets respectively are maintained. The trajectories are inserted into R
according to their total visibility /.vis computed so far. After iterating for all targets, the
top-k trajectories from R will have the highest visibility score V (T,).

At first, we initialize T’ (Line-1) which is basically an open set of targets whose visibility
have not been evaluated yet. For each target ¢, the associated trajectory list L, inside the
visible range are retrieved. The targets are inserted into 7’ as a function of their preference
level, and the number of trajectories inside their visible range (Lines 4-5). Then, the priority
list of trajectories R and the global bound min_total_vis are initialized (Line 7).

The evaluation process is continued until 7’ is empty. We select the next target based on
the process mentioned in Section 5.4.1 (Line 9), and then the target from the open set T’
is removed (Line 10). After getting a target ¢, for each trajectory /, we check the pruning
condition in Lemma 5.6. If the condition holds, it can be removed from L; (Lines 11-15). If
all trajectories inside the visible range of a target are pruned, and the target can be pruned
(Lines 16-18). Moreover, we determine the number of trajectories that should be retrieved
w.r.t. target ¢ according to the heuristic defined in Section 5.4.4 (Line 19).

After that, Algorithm 2 is processed for target ¢+ with the related trajectory set L;. This
query returns a trajectory list R; containing the top-k’ trajectories for target ¢ (Line 20) and
the value of upper bound visibility score is updated (Line 21). For each trajectory / in Ry,
l.vis and [l.expected are updated, and inserted / into R (Lines 22-26). The minimum total
visibility is also updated (Line 27).

Next, for each target ¢, we compare the expected upper bound of any unevaluated trajec-
tory [€ L; with UB (Lemma 7). If the condition holds, then we calculate its visibility score
vis(l, t) for target ¢ and insert into R accordingly (Lines 31-34).

Finally, the top-k trajectories are returned from R as the result of the kK AMVT query
(Line 37).

5.5 Extending the solution for weighted trajectories

In this section, we describe how the steps of the solution can be extended when each tra-
jectory is associated with a weight denoting its preference. We extend the solution for both
cases where the weights can be easily precomputed, or the weights needs to be computed
during query time.

Precomputed weight If the weight of each trajectory can be precomputed easily (e.g.,
weight based on the length of the trajectory), we can extend Algorithm 2 to process the
weighted version of the query. However, we have to consider both the visibility of the tra-
jectory vis(l, t), and its weight w;. Therefore, we maintain a priority list R of trajectories,
in decreasing order of g(vis(l, t), w;), as mentioned in Section 3. Moreover, while updating
l.ub and [.Ib we need to replace vis(x, t) by g(vis(x, t), w;), where x is the portion of the
trajectory / that has been processed so far.

Therefore, the top-k trajectories of R will have the highest visibility of target # when
considering trajectory weights. We can now use Algorithm 3 combined with this variation
of Algorithm 2 for each target, to obtain the solution for the kAMVT query.

Computing weights at query time If the weight of each trajectory is a distance for a query
specific location — the weight needs to be computed on-the-fly. This can be accomplished by
maintaining a priority list R of trajectories in decreasing order of A (l.vis, V), as mentioned
in Section 3. Here [.vis is the total visibility of trajectory /, and v is its corresponding

@ Springer

Geoinformatica

weight, based on the distance of the starting point of / from the query user. Algorithm 2
returns the list R, containing the top-k trajectories for a single target 7. Then, we have to
find the corresponding weight v; for each trajectory / € R if it has not been computed
before. After updating the total visibility /.vis for [, it is inserted into the list R according
to its value A2 (l.vis, ¥;). Moreover, while updating [.expected and min_total_vis, we have to
use h(l.vis, ;) instead of [.vis. Therefore, the first k trajectories of R will have the highest
visibility when considering their distance from the query.

6 Experimental evaluation

In this section, we evaluate the performance of our proposed algorithms for kAMVT queries
with three real datasets: Boston, New York, and Los Angles, and one large scale synthetic
data set. As there is no prior work for this problem, so we compare our solutions with a
simple baseline. Specifically, we compare the performance among the following four meth-
ods: (i) the straightforward approach presented in Section 5.2 as the baseline approach with
no pruning (NP), (ii) an obstacle pruning (OP) based approach that employs obstacle prun-
ing techniques described in Section 5.3.1, (iii) a trajectory pruning (7P) based approach
that employs the trajectory pruning techniques for single and multiple targets described in
Sections 5.3.2 and 5.4.2 respectively, and finally, (iv) the combination of both trajectory
and obstacle pruning along with a multiple target based optimizations approach (denoted as
TP+OP), which acts as our solution.

6.1 Experimental setup

We use Java to implement our algorithms. Experimental evaluations were conducted on a
machine with a PowerEdge R820 rack server with 6-core Intel Xeon E5-4600 processors,
and 64 GB RAM, and LINUX OS installed. We have used real obstacle and trajectory
datasets for our experiments.

6.1.1 Datasets

We have used three real obstacle datasets: New York (NY), Los Angles (LA), and Boston
(BN), representing the building layouts of three different cities. A schematic view of these
obstacle data are shown in Fig. 10. We have used Foursquare check-ins, taxi trips and bus

(a) Boston (b) New York (c) Los Angeles

Fig. 10 Real dataset obstacle schematic

@ Springer

Geoinformatica

routes as trajectory data. Obstacle and trajectory datasets are summarized in Tables 4 and 5,
respectively. In all experiments, we have normalized the data space into 10,000 x 10,000
span.

New York Datasets: We have used PLUTO (Extensive land use and geographic data at
the tax lot level) dataset from the Department of City Planning (DCP) as our NY obsta-
cle dataset. We have used the city buildings of five boroughs of New York: Manhattan,
Brooklyn, Queens, The Bronx and Staten Island, which provide a total of 85,8371 obsta-
cles. The PLUTO files contain more than seventy fields derived from data maintained by
city agencies. From these attributes, we have used x-coordinate, y-coordinate, and the
area of the obstacle to generate x and y extent of each obstacle through interpolation.

We have used the Foursquare check-ins and taxi trips of NY city as our trajectory dataset
in this case. For Foursquare check-ins, we have collected the check-ins of each user in each
day and considered these as trajectories. For taxi trips, we have only source and destination
locations of the trips record in September, 2015 from NYC Taxi and Limousine Commission
(TLC). For each start and end locations of the trip, we have used Open Street Map to find
the shortest route, and consider this as a trajectory. In total, we have 830,020 trajectories,
which include both check-ins and taxi trips, for the NY trajectory dataset.

Los Angles Datasets: We have used building outlines from LAR-IAC2 (2008) of the City
of Los Angles (Countywide Building Outlines) as our LA obstacle dataset. The building
outlines is represented as a geometric layer file. We have extracted the coordinates (lati-
tude, longitude) of each building, then found the bounding box of the coordinates to get
the extents of each obstacle. There are 2,999,997 (almost 3 million) obstacles in our LA
dataset.

For trajectories, we have used Los Angeles bus routes and passenger transitions dataset
from [43]. There were only 1,209 bus routes in this dataset. We have used the path between
two stoppages in a route as a trajectory. Moreover, the passenger transition dataset only con-
tains the start and end locations. We have used the Open Street Map to find a route between
every start and end locations pair and consider the route as a trajectory. This produces
177,595 trajectories in total for our LA trajectory dataset.

Boston Datasets: The Boston obstacle set represents 130,043 building objects in the
Boston downtown area. In the dataset, objects are represented as 3D rectangles which are
used as obstacles in our experiments. In our experiments, we only consider 2D extents of
these obstacles (considering the z-axis value as zero) in our experiments. Since, we have
not found any real trajectory datasets for Boston, we have generated synthetic trajecto-
ries in this dataset. To generate trajectories, first we have generated uniformly distributed
coordinate points in the sample space so that no line segment joining the consecutive
points intersect any existing obstacle. Each trajectory is composed of 20-30 segments

Table4 Obstacle datasets

Dataset # of Obstacles Description

New York (NY) 858,371 PLUTO (extensive land use and geographic data)

Los Angles (LA) 2,999,997 LAR-IAC2 (2008) of City of Los Angles (building outlines)
Boston (BN) 130,043 Boston downtown from Boston development authority

@ Springer

Geoinformatica

Table 5 Trajectory datasets

Dataset # of Trajectories Description

New York (NY) 830,020 Foursquare Check-ins and NY Taxi trajectory
Los Angles (LA) 177,595 Bus routes and passenger transitions

Boston (BN) 1,000,000 - 3,000,000 Synthetically generated

and each segment is 10-20 units long. We have generated a maximum of three million
trajectories in the data space.

Synthetic Dataset: To show the scalability of our approaches, we have also generated
large synthetic datasets for both obstacles and trajectories of various sizes. To generate
obstacles, we generate the center points of the obstacles using a uniform distribution,
and then also generate the extent of each obstacle in the range of 5 to 10 units using the
same uniform distribution. In total, we generate four datasets of sizes, 0.5M 1M, 2M, and
3M of obstacles. To generate trajectories, we have first generated uniformly distributed
coordinate points in the sample space so that no line segment joining the consecutive
points intersect any existing obstacle. Each trajectory is composed of 20-30 segments,
and each segment is 10-20 units long. We have generated four datasets of sizes, 0.5M
1M, 2M, and 3M of trajectories.

Query (Target) Datasets: To generate targets, we first choose a rectangular query area
as a percentage of the total data space in which targets or query objects can reside. Then
we choose targets randomly from the obstacle set inside the query area.

6.2 Performance evaluation and parameterization

We studied the efficiency and scalability of our proposed approaches by varying several
parameters. The list of parameters with their ranges and default values in bold are shown in
Table 6. In particular, we vary the values of k, number of obstacles 7, number of trajecto-
ries ny, number of targets nr, and the percentage of target area Ar. For all experiments, a
single parameter is varied while keeping the rest as the default settings.

We have used two Rx-trees to index obstacles and minimum bounding rectangles
(MBRs) of trajectories, where in both case the page size is fixed at 1KB.

For efficiency and scalability, we studied the impact of each parameter on (i) the process-
ing time (run time), (ii) the average number of obstacles retrieved (the number of obstacles
that were retrieved from R-tree and considered in the visibility calculation), and (iii) the
average number of trajectories retrieved (the number of trajectories that were considered in

Table 6 Parameters

Parameter Range Default

k 1,2,4,8,16 4
Number of targets, nr 1,5, 10, 15,20 10
Percentage of target area, A7 5, 10, 15, 20, 25 10
Number of trajectories, ny, 500,000, 1,000,000, 2,000,000, 3,000,000 1,000,000
Number of obstacles, n¢ 5,000,000, 1,000,000, 2,000,000, 3,000,000 1,000,000
Dataset Synthetic, Real Real

@ Springer

Geoinformatica

visibility calculation), for answering the kAMVT query. We run the experiment ten times
for each configuration and report the average performance. We consider equal preference
for each target in these experiments. For aggregation function, we have used summation of
the visibility of each target.

6.3 Experimental results

In this section, we present our experimental results on different datasets, and show the effect
of different parameters on the performance of competitive methods.

6.3.1 Effectofk

In this set of experiments, we vary the value of k as 1, 2, 4, 8, and 16, and compare the
performance of different methods in terms of processing time, and obstacle and trajectory
retrieval costs.

New York (NY): Figure 11 shows the effect of k for the New York dataset. As k
increases, the processing time is nearly constant for all algorithms. However, the perfor-
mance of TP+OP is about 19.5 times faster than NP, 12 times faster than TP, and 3.8 times
faster than OP. The number of obstacles and trajectories retrieved for TP+OP is nearly
constant for values of k. The TP+OP approach retrieves 1.8 and 1.4 times fewer obsta-
cles than that of the NP and TP based approaches, respectively. However, the TP+OP
approach and the OP approach retrieve a similar number of obstacles and trajectories.

Since the TP approach only considers trajectory pruning, the number of retrieved obsta-
cles is the same as the baseline approach, NP, and the number of trajectories retrieved is
nearly same as that of the TP+OP. On the other hand, the number of obstacles retrieved
in the OP approach is nearly the same as that of the TP+OP approach, and the number of
trajectories retrieved by OP is same as that of NP.

Los Angeles (LA): The effect of k for the LA dataset is shown in Fig. 12. As k increases,
similar to the NY dataset, the performance of all of approaches almost remain constant.
We observe that the TP+OP approach is about 20.6 times faster than NP, 18.2 times faster
than TP, and 2 times faster than OP. Also the number of obstacles retrieved in TP+OP is
about 3.7, 3.6, 1.7 times less than that of NP, TP, and OP approaches, respectively. The
number of trajectories retrieved in TP+OP is about 4.7 times fewer than that NP and OP,
and 2.2 times fewer than that of TP.

= & o —= 3 300
180 g5 g = — S 7500 E'/l} ‘‘‘‘‘‘‘ - g
O} = O L 2 270
~ 100 © o ot
o) . S 6500 Ty 2 d
S XK Koo * @ * = 240
— 70 S TP+OP —— TP %~ o
% TP+OP —+— TP --¥ & 5500 o - NP S 210
5 40 OP - % - NP -+ @ X - et L .%
- KK § 4500 Z\ﬁ £ 180
10 ‘ 2 1 g
s 3500 s 150
12 4 8 16 12 4 8 16
k Kk K

Fig. 11 Effect of k in New York dataset

@ Springer

Geoinformatica

el el
190 hg—— B ————4§ Q g e
o 160[3?6 % % 8 s TR i
G ke < z -%¢C
e 130/ e e T 600 |/ o
£ 100%f ° 5 450 Jxox
= 70 | TP+OP —— TP - - S $
A R g 0Fmes o
e e =4 2 150 P——ou0W ——
©
12 4 8 16 12 4 8 16
k k k

Fig. 12 Effect of k in Los Angles dataset

Boston (BN): Figure 13 shows the effect of k for the Boston downtown dataset, which
shows similar performance as shown in two other datasets. The performance of the
TP+OP approach is about 16, 11.5, 1.5 times faster than that of the NP, TP, and OP
approaches, respectively. Also, The TP+OP approach retrieves about 2.5, 2, and 1.2 times
fewer obstacles than that of the NP, TP, and OP approaches, respectively. We have also
observed that the number of trajectories retrieved in the TP+OP approach is about 3, 2.8,
and 1.7 times fewer than that of the NP, OP, and TP, respectively.

6.3.2 Effectof nr

In this set of experiments, we vary the number of targets, nr as 5, 10, 15, 20, and 25,
and compare the performance of our methods in terms of processing time, and obstacle /
trajectory retrieval costs for different datasets.

New York (NY): Figure 14 shows the effect of nr for the NY dataset. As the number of
targets increases, the total processing time increases for all methods. However, the graph
is much steeper for all other methods when compared to the TP+OP approach. Here,
the TP+OP approach is on average about 10, 7, 4.7 times faster than NP, TP, and OP
approaches, respectively.

In general, we have observed increasing trends of the number number of obstacles and
trajectories retrieved as n7 increases, which is expected. However, the number of obstacles
retrieved in the TP+OP approach is about 2, and 1.7 times less than that of the NP and TP
approaches, respectively. We have also observed similar trends for trajectory retrieval.

Los Angeles (LA): The effect of nr for the LA dataset is shown in Fig. 15. As the num-
ber of targets increases, the total processing time increases for all methods. However, the

9 °
T g 3
450 pg g 3 300 3 1600
é’ 350 B s ® 140017
7] - |
F 250 2 200 § 1200
g e 8 < g 1000
o 150 ¥ 1piop —— TP % 2 150, T 800
OP -3¢ - NP —{+ o 100 U =
50 -y oooxe oo %] g 600
124 8 16 124 8 16
k k k

Fig. 13 Effect of k in (BN dataset)

@ Springer

Geoinformatica

130 7 o 7 8
e A b 0 1w
w TP --%- = TP X =
o 90 NP T a’ ¥ 2 NP /'ﬂ/""'}(S 700
€ 70 7 4 8500 /%x >
E S 2 5 500
5 g 000G 8
= Lo 173 IV 3 <
e 30 e o < 5500 % .- s 300

10 g’ 2 4000 2 100

[
1 5 10 15 =20 ° 15 10 15 20
nt nt

Fig. 14 Effect of ny (NY dataset)

graph suggests exponential growth for the NP and TP approaches. Here, in term of pro-
cessing time, the TP+OP approach is on average about 18 times faster than NP, 16 times
faster than TP, and about 2.6 times faster than OP.

The number of obstacles and trajectories retrieved are increasing for all algorithms. For
TP+OP, the number of obstacles retrieved is about 2.9 times less than NP, 2.4 times less than
TP, and 1.1 times less than OP. The number of trajectories retrieved for TP+OP is about 1.6
times less than NP, 1.5 times less than OP, and 1.2 times less than TP.

Boston (BN): Figure 16 shows the effect of n7 for the BN dataset. As the number of tar-
gets increases, performance trends are similar to the NY and LA datasets. Here, TP+OP
is on average about 40 times faster than NP, 30 times faster than TP, and about 2.2 times
faster than OP. Moreover, the TP+OP approach retrieves about 3.9 times fewer obstacles
than NP, and the OP and TP retrieve about 1.2 times and 3.1 times more obstacles, respec-
tively than the TP+OP approach. The TP+OP approach retrieves about 3.2, 12.8, 1.2
times fewer trajectories when compared to the NP, OP, and TP approaches, respectively.

6.3.3 Effectof n.

We have varied the number of trajectories ny, and compared the performance of different
methods. Since we have a fixed set of real trajectories for both NY and LA datasets, we only
generate synthetic trajectories of various sizes, 0.5M, 1M, 2M, and 3M using the Boston
and synthetic dataset.

Boston (BN): Figure 17 shows the results when varying ny for the BN dataset. As ny,
increases, the total processing time and number of trajectories retrieved increase for all
methods. However, the graph is much steeper for NP and TP when compared to the

3 °

190 [, %2 0P —— | 3 2500 5
@ 160 e g;_,,ﬂ SF 2 5500 gl a2 a0 % = i)
o 130 L 2 4500 e 9] NP -0 <
E e 8 4 S 1500 X
= 100 s 8 3500 P 5 Jx
s 70 a- & 2500 | % ., § 1000
P 40] S 1500 g 500

10 g o SR % 500 % 100

1 15 20 1 5 10 15 20 10 15 20
ny ny

Fig. 15 Effect of ny (LA dataset)

@ Springer

Geoinformatica

kel - el
2500 2 00 g 2 2500 -
- 2 5500 OP - % o TP+OP —— -
©» 2000 = TP --K-- /ET /_,.)K = +op == 9
© 2 4500 NP - S 3] TP K-
S 1500] > NP
= 8 3500 a 2 5|
= S i S 1500 e
% 1000 g 2500 | - g |
2 500 S 1500 g f—* @ 1000 e
768 2 500 i 2 s00
1 5 10 15 20 1 5 10 15 20
ny nt

Fig. 16 Effect of ny (BN dataset)

TP+OP and OP. Here, in term of processing time, the TP+OP approach is on average
about 17 times faster than NP, 14 times faster than TP, and 2 times faster than OP.

Since with the increase of the number of trajectories, the Trajectory Segmentation Range
of a target may also increase, resulting in more obstacles being retrieved. The number of
obstacles retrieved is nearly identical for both TP+OP and OP, as both approaches used
obstacle pruning. However, the TP+OP approach retrieves about 4 and 2.8 times fewer
obstacles than that of the NP and TP approaches, respectively. The average number of tra-
jectories retrieved is similar for both NP and OP, as neither of them prune trajectories.
However, the TP+OP approach retrieves about 2.4 times fewer trajectories than both of these
approaches.

Synthetic: The effect of n o on the synthetic dataset is shown in Fig. 18. As the number of
trajectories increases, the total processing time increases for all of the methods, and the
trends ares similar to those shown in the Boston dataset. However, the TP+OP approach
is on average about 56, 38, 2.2 times faster than the NP, TP, and the OP approaches,
respectively. We have also observed that the average number of obstacles retrieved is
nearly constant for both TP+OP and OP approaches and increases slightly for TP and
NP approaches. We have also observed that the TP+OP approach always retrieve much
fewer obstacles and trajectories than that of other approaches.

6.3.4 Effectof ng

In this set of experiments, we vary the number of obstacles, n g, as 0.5M, 1M, 2M, and 3M.
Since real datasets have a fixed number of obstacles, we have generated a varying number
obstacles synthetically and ran the experiments. Figure 19 shows that with the increase of

3 el
1200 » 5 2000 =T
@ TP4OP —— g T~ ®-% 7 £
g 80 BE R L e I
E X o 000 | BT x s
g 400 BT 8 b e g
E 200 S 500F .y _....x S
Y o 300k)
©

“ 05M1M 2M 3M

n.

Fig. 17 Effect of ny in Boston downtown dataset

@ Springer

Geoinformatica

° el
30000 frpiop —— /"‘] 2 4
— OP - % - . 2]
2 w7 B 5
2 20000 o % > =
= . o) -
= . x g %
8 10000 g b ki
o XK Qo ©
= 5000 g~ © =
208 s 2 2
0.5M1M 2M 3M

Fig. 18 Effect of ny, in Synthetic dataset

no, the total processing time and number of obstacles and trajectories retrieved, increase
for all methods. This is expected as more obstacles mean more visibility computations in
the query evaluation process. We also observe that the TP+OP approach is about 40, 29.5,
1.8 times faster than NP, TP, and OP approaches, respectively. Also, the TP+OP approach
needs to retrieve much fewer obstacles and trajectories than all other methods.

6.3.5 Effectof At

In this set of experiments, we show the effect of varying the query (or target) area in
Fig. 20. As At increases, the processing time increases for both the TP and NP approaches,
and remains nearly same for both the OP and TP+OP approaches. However, the TP+OP
approach is on average about 88, 77, and 1.8 times faster than NP, TP, and OP approaches,
respectively.

The number of retrieved obstacles and trajectories also increase because if targets are
concentrated in a smaller area, and they share common trajectories and obstacles in their
visible range. Thus increasing Ar also increases the number of retrieved trajectories and
obstacles. In all cases our TP+OP approaches outperform other approaches significantly.

6.3.6 Analysis

We have compared our three approaches: OP, TP, and OP+TP, with a baseline approach
(NP). For our experimental results, it is evident that the TP+OP approach provides the best
result in terms of processing time, number of obstacles and trajectories retrieved in all cases.
We also observe that the OP approach outperforms the TP approach significantly in terms of
processing time. The TP approach only employs trajectory pruning but no obstacle pruning.
If we do not prune obstacles, then we have to take projection with respect to all obstacles

° el
20000
TP+OP —— m 2 2 1800
o TE 4 3
- o - B 1500 3
£ = n = K
£ 10000 S c 2 5 1200 |,
= i1 * o 8
E 5000 k- 2 T 9003
o =1
2000 |
RS S 2 % 600
0.5M1M M 3M 0.5M 1M
No

Fig. 19 Effect of n¢ in Synthetic dataset

@ Springer

Geoinformatica

el °
20000 © 500 3
— 5 Ty 3 400 3
o - = =
Y P e e g
(%]
E 10000 gi;fg-" < 800 S
s £ 200 3
5] 5000 [rtpiop —4— TR -X%- 8 '
= 2 OP - X- - S oo =
28 X % %
5 10 15 20 25 5 10 15 20 25
Ar Ar

Fig.20 Effect of A7 in Synthetic dataset

in the visible range which is computationally expensive. Since the OP approach employs
obstacle pruning, but not trajectory pruning, we have to take projection with respect to the
obstacles in the reduced obstacle set, which reduces the cost of taking projection every time.

In case of obstacle retrieval, the OP approach performs nearly the same as the TP+OP
approach. In our approach, obstacles are pruned for each target independently while pro-
cessing each kMVT query. Thus, no obstacles are pruned globally, and thereby the average
number of obstacle retrieved is nearly same for them. However, in case of trajectory
retrieval, the TP approach retrieves more trajectories than that of the TP+OP. The reason is
as follows. Though both approaches consider trajectory pruning, the TP+OP approach also
considers the target ordering and can therefore prune more trajectories as evaluating targets
in a specific order can prune trajectories earlier in the process.

The performance of the OP approach in terms of the trajectory retrieval is nearly the same
as that of the NP approach. If we do not consider trajectory pruning, then we have to con-
sider all the trajectories inside the visible range. So nearly the same number of trajectories
need to be retrieved in both approaches. But in case of obstacle retrieval, the TP approach
performs better than the NP approach in all cases although none of them are using obsta-
cle pruning. Since we consider trajectory pruning in TP, this approach provides a smaller
Trajectory Segmentation Range for each target than that of the NP approach. Therefore the
number of obstacles retrieved in the TP approach is less than that of the NP approach.

7 Conclusion

In this work, we have proposed and investigated the k Aggregate Maximum Visibility Tra-
jectory (ckAMVT) and its variants. The kAMVT query finds the trajectory that provides the
best view of the targets in the presence of obstacles, which has many interesting applications
that include VR guided navigation, tour planning, and advertisement. To efficiently solve
the kKAMVT query, we have proposed a series of optimization techniques such as obstacle
and trajectory pruning mechanisms, and target ordering technique. To verify the efficiency
and effectiveness of our solutions, we conduct an extensive experimental study using a num-
ber of large real and synthetic datasets: New York, Los Angles, Boston, and synthetic. Our
experimental results show that our approach is between 10 and 50 times faster than the
baseline approach. To the best of our knowledge, this is the first query-based solution that
integrates user route activities or trajectories with the large-scale 3D modeling to answer an
interesting set of visibility queries.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

Geoinformatica

References

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

. Asano T, Asano T, Guibas L, Hershberger J, Imai H (1985) Visibility-polygon search and euclidean

shortest paths. In: Proceedings of the 26th annual symposium on foundations of computer science, SFCS.
IEEE Computer Society, Washington, pp 155-164

. Asano T, Asano T, Guibas L, Hershberger J, Imai H (1986) Visibility of disjoint polygons. Algorithmica

1(1):49-63

. Ben-Moshe B, Hall-Holt O, Katz MJ, Mitchell JSB (2004) Computing the visibility graph of points

within a polygon. In: Proceedings of the twentieth annual symposium on computational geometry, SCG
’04. ACM, New York, pp 27-35

. Bittner J (2002) Efficient construction of visibility maps using approximate occlusion sweep. In:

Proceedings of the 18th spring conference on computer graphics, SCCG ’02. ACM, New York,
pp 167-175

. ChenL, Ozsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: Pro-

ceedings of the ACM SIGMOD international conference on management of data. Baltimore, Maryland,
USA, June 14-16, pp 491-502

. Chen Z, Shen HT, Zhou X (2011) Discovering popular routes from trajectories. In: Proceedings of the

27th international conference on data engineering, ICDE 2011, April 11-16. Hannover, Germany, pp
900-911

. Chen Z, Shen HT, Zhou X, Zheng Y, Xie X (2010) Searching trajectories by locations: an efficiency

study. In: Proceedings of ACM SIGMOD international conference on management of data, SIGMOD
’10. ACM, New York, pp 255-266

. Choudhury FM, Ali ME, Masud S, Nath S, Rabban IE (2014) Scalable visibility color map construction

in spatial databases. Inf Syst 42:89-106

. Ding X, Chen L, Gao Y, Jensen CS, Bao H (2018) Ultraman: a unified platform for big trajectory data

management and analytics. Proceedings of the VLDB Endowment 11(7):787-799

. Erikson C, Manocha D, Baxter WV III (2001) Hlods for faster display of large static and dynamic

environments. In: Proceedings of symposium on interactive 3D graphics. ACM, pp 111-120

. Gao Y, Zheng B (2009) Continuous obstructed nearest neighbor queries in spatial databases. In:

SIGMOD Conference. ACM, pp 577-590

. Gao Y, Zheng B, Chen G, Li Q, Chen C, Chen G (2010) Efficient mutual nearest neighbor query

processing for moving object trajectories. Inform Sci 180(11):2176-2195

Gao Y, Zheng B, Chen G, Li Q, Guo X (2011) Continuous visible nearest neighbor query processing in
spatial databases. VLDB J 20(3):371-396

Gao Y, Zheng B, Lee WC, Chen G (2009) Continuous visible nearest neighbor queries. In: Proceedings
of the 12th international conference on extending database technology: advances in database technology,
EDBT *09. ACM, New York, pp 144-155

GuY, YuX, YuG (2014) Method for continuous reverse k-nearest neighbor queries in obstructed spatial
databases 25:1806-1816

Guttman A (1984) R-trees: a dynamic index structure for spatial searching, vol 14. ACM

Haider CMR, Arman A, Ali ME, Choudhury FM (2016) Continuous maximum visibility query for a
moving target. In: Australasian database conference. Springer, pp 82-94

Heffernan PJ, Mitchell JSB (1995) An optimal algorithm for computing visibility in the plane. SIAM J
Comput 24(1):184-201

Kalashnikov DV, Prabhakar S, Hambrusch SE (2004) Main memory evaluation of monitoring queries
over moving objects. Distrib Parallel Datab 15(2):117-135

Kim DS, Yoo KH, Chwa KY, Shin SY (1998) Efficient algorithms for computing a complete visibility
region in three-dimensional space. Algorithmica 20(2):201-225

Lee KC, Lee WC, Zheng B (2009) Fast object search on road networks. In: Proceedings of the 12th
international conference on extending database technology: advances in database technology. ACM, pp
1018-1029

Levandoski JJ, Khalefa ME, Mokbel MF (2011) The caredb context and preference-aware database sys-
tem. In: 5th International workshop on personalized access, profile management, and context awareness
in databases, PersDB-in conjunction with very large data bases, VLDB

Levandoski JJ, Mokbel MF, Khalefa ME (2010) Flexpref: a framework for extensible preference evalu-
ation in database systems. In: IEEE 26th International conference on data engineering (ICDE). IEEE, pp
828-839

Masud S, Choudhury FM, Ali ME, Nutanong S (2013) Maximum visibility queries in spatial databases.
In: 29th International conference on data engineering (ICDE). IEEE, pp 637-648

@ Springer

Geoinformatica

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Mouratidis K, Lin Y, Yiu ML (2010) Preference queries in large multi-cost transportation networks. In:
IEEE 26th International conference on data engineering (ICDE). IEEE, pp 533-544

Mouratidis K, Papadias D, Hadjieleftheriou M (2005) Conceptual partitioning: an efficient method for
continuous nearest neighbor monitoring. In: Proceedings of ACM SIGMOD international conference on
management of data. ACM, pp 634-645

Nutanong S, Tanin E, Zhang R (2007) Visible nearest neighbor queries. Springer, Berlin, pp 876-883
Nutanong S, Tanin E, Zhang R (2010) Incremental evaluation of visible nearest neighbor queries. IEEE
Trans Knowl Data Eng 22(5):665-681

Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network databases. In:
Proceedings of the 29th international conference on very large data bases, vol 29. VLDB Endowment,
pp 802-813

Rabban IE, Abdullah K, Ali ME, Cheema MA (2015) Visibility color map for a fixed or moving target in
spatial databases. In: International symposium on spatial and temporal databases. Springer, pp 197-215
Rocha-Junior JB, Ngrvag K (2012) Top-k spatial keyword queries on road networks. In: Proceedings of
the 15th international conference on extending database technology. ACM, pp 168-179

Shafique S, Ali ME (2016) Recommending most popular travel path within a region of interest from his-
torical trajectory data. In: Proceedings of the 5Sth ACM SIGSPATIAL international workshop on mobile
geographic information systems. ACM, pp 2—-11

Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P (2012) User oriented trajectory search for trip
recommendation. In: Proceedings of the 15th international conference on extending database technology,
EDBT. ACM, New York, pp 156-167

Shang S, Ding R, Zheng K, Jensen CS, Kalnis P, Zhou X (2014) Personalized trajectory matching in
spatial networks. VLDB J 23(3):449-468

Shou L, Huang Z, Tan KL (2003) Hdov-tree: the structure, the storage, the speed. In: Proceedings on
19th international conference on data engineering. IEEE, pp 557-568

Song Z, Roussopoulos N (2001) K-nearest neighbor search for moving query point. In: International
symposium on spatial and temporal databases. Springer, pp 79-96

Stewart AJ, Karkanis T (1998) Computing the approximate visibility map, with applications to form
factors and discontinuity meshing. Springer, Vienna, pp 57-68

Suri S, O’Rourke J (1986) Worst-case optimal algorithms for constructing visibility polygons with holes.
In: Proceedings of the second annual symposium on computational geometry, SCG ’86. ACM, New
York, pp 14-23

Tao Y, Papadias D (2002) Time-parameterized queries in spatio-temporal databases. In: Proceedings of
the 2002 ACM SIGMOD international conference on management of data. ACM, pp 334-345

Tao Y, Papadias D, Shen Q (2002) Continuous nearest neighbor search. In: VLDB’02: Proceedings of
the 28th international conference on very large databases. Elsevier, pp 287-298

Tao Y, Papadias D, Shen Q (2002) Continuous nearest neighbor search. In: Proceedings of the 28th
international conference on very large data bases, VLDB ’02. VLDB Endowment, pp 287-298

Tsai YHR, Cheng LT, Osher S, Burchard P, Sapiro G (2004) Visibility and its dynamics in a pde based
implicit framework. J Comput Phys 199(1):260-290

Wang S, Bao Z, Culpepper JS, Sellis T, Cong G (2017) Reverse k nearest neighbor search over
trajectories. IEEE Transactions on Knowledge and Data Engineering

Xia C, Hsu D, Tung AKH (2004) A fast filter for obstructed nearest neighbor queries. Springer, Berlin,
pp 203-215

Yu X, Pu KQ, Koudas N (2005) Monitoring k-nearest neighbor queries over moving objects. In:
Proceedings on 21st international conference on data engineering, iCDE. IEEE, pp 631-642

Zarei A, Ghodsi M (2005) Efficient computation of query point visibility in polygons with holes. In:
Proceedings of the twenty-first annual symposium on computational geometry, SCG *05. ACM, New
York, pp 314-320

Zhang C, Shou L, Chen K, Chen G (2012) See-to-retrieve: efficient processing of spatio-visual keyword
queries. In: SIGIR, pp 681-690

Zhang D, Ding M, Yang D, Liu Y, Fan J, Shen HT (2018) Trajectory simplification: an experimental
study and quality analysis. Proc VLDB Endowment 11(9):934-946

Zhang J, Papadias D, Mouratidis K, Zhu M (2004) Spatial queries in the presence of obstacles. Springer,
Berlin, pp 366-384

Zheng K, Shang S, Yuan NJ, Yang Y (2013) Towards efficient search for activity trajectories. In: ICDE.
IEEE Computer Society, pp 230-241

@ Springer

Geoinformatica

Nafis Irtiza Tripto is currently a Lecturer in the Department of Computer Science and Engineering (CSE)
at Bangladesh University of Engineering and Technology (BUET). He has completed his B.Sc. degree from
same department in September, 2017 and currently enrolled as a Masters student.

His research areas particularly focus on Spatial data, Machine Learning and Textual data analysis.

Mahjabin Nahar is currently a Lecturer in the Department of Computer Science and Engineering (CSE) at
Bangladesh University of Engineering and Technology (BUET). Her research interests focus on Artificial
Intelligence, Machine Learning, Spatial Databases.

@ Springer

Geoinformatica

Dr. Mohammed Eunus Ali is a Professor in the Department of Computer Science and Engineering (CSE)
at Bangladesh University of Engineering and Technology (BUET), Dhaka since May 2014. He received his
PhD degree in Computer Science and Software Engineering from the University of Melbourne in 2010. He
also worked as a Research Fellow and Visiting Research Scholar in the University of Melbourne in 2010 and
2012-2013, respectively. He was also visiting research fellow at Monash University and RMIT University in
2015 and 2016, respectively. Dr. Eunus is the recipient of prestigious UGC Award in the year 2012 for his
outstanding research contribution.

Dr. Eunus’s research falls in the intersection of data management and mobile computing. His research
areas cover a wide range of topic in database systems and information management that include spatial and
multimedia databases, location based services, social media and big data analytics. The primary focus of his
current research is developing systems and algorithms to improve the performance of location based services
in mobile environments.

Farhana Murtaza Choudhury is a Lecturer (Early Career Development Fellow) at RMIT University in the
School of Science (Computer Science and Information Technology) since September, 2017. She is affiliated
with the RMIT - NICTA Data Analytics Lab and the Information Storage and Retrieval (ISAR) Research
Group ran by Professor Mark Sanderson.

Her current work focuses on Spatial and Spatial-textual Databases, Big Data, Social network, and
Streaming query processing. Her PhD supervisors are Prof. Timos Sellis and Dr. Shane Culpepper.

@ Springer

Geoinformatica

Dr.J. Shane Culpepper is a Vice-Chancellor’s Principal Research Fellow and Associate Professor (Reader in
the UK, Full Professor in North America) at RMIT University in the School of Science (Computer Science).
He runs the Information Discovery Lab, and is a member of the Information Storage and Retrieval (ISAR)
Research Group.

His current work focuses on designing and evaluating efficient and effective algorithms and data struc-
tures for a wide variety of information storage and retrieval problems. Broadly speaking his research
interests include information retrieval, text indexing, data compression, system evaluation, information dis-
covery, learning to rank, natural language processing, algorithm engineering, and scalable distributed/parallel
computing.

Professor Timos Sellis is Director of Swinburne’s Data Science Research Institute. His research interests
include big data, data streams, personalisation, data integration, and spatio- temporal database systems.

Professor Sellis is an IEEE Fellow for his contributions to database query optimisation and spatial data
management. He is also an ACM Fellow for his contributions to database query optimisation, spatial data
management and data warehousing.

Up until 2012 Professor Sellis was Director of the Institute for the Management of Information Systems
and a Professor at the National Technical University of Athens. He holds an MSc degree from Harvard
University, a PhD from the University of California at Berkeley, and has served as president of the National
Council for Research and Technology of Greece.

@ Springer

	Top-k trajectories with the best view
	Abstract
	Introduction
	Related work
	Visibility in computational geometry and computer graphics
	Spatial query processing in the obstructed space
	Visibility based spatial query processing
	Query processing with trajectories

	Problem formulation
	Preliminaries
	Our approach
	Visibility computation of a target from a trajectory
	Finding the necessary segments of trajectory
	Trajectory partitioning by obstacle projection

	A straightforward approach
	Proposed approach
	Determining a reduced obstacle set
	Trajectory pruning for a target
	Processing kAMVT query for single target
	Proof of correctness

	Visibility computation for multiple targets
	Target ordering technique
	Trajectory pruning for multiple targets
	Target pruning
	Selecting candidate trajectories w.r.t. a target
	Processing the kAMVT query

	Extending the solution for weighted trajectories
	Precomputed weight
	Computing weights at query time

	Experimental evaluation
	Experimental setup
	Datasets

	Performance evaluation and parameterization
	Experimental results
	Effect of k
	Effect of nT
	Effect of nL
	Effect of nO
	Effect of AT
	Analysis

	Conclusion
	References

