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ABSTRACT

The use of sampling, randomized algorithms, or training based on
the unpredictable inputs of users in Information Retrieval often
leads to non-deterministic outputs. Evaluating the effectiveness of
systems incorporating these methods can be challenging since each
run may produce different effectiveness scores. Current IR eval-
uation techniques do not address this problem. Using the context
of distributed information retrieval as a case study for our investi-
gation, we propose a solution based on multivariate linear model-
ing. We show that the approach provides a consistent and reliable
method to compare the effectiveness of non-deterministic IR algo-
rithms, and explain how statistics can safely be used to show that
two IR algorithms have equivalent effectiveness.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware— Performance Evaluation

General Terms

Experimentation, measurement, information retrieval, effectiveness
evaluation, experimental design, statistical analysis

1. INTRODUCTION
How should we measure the effectiveness of an IR system if each

run might produce a different output? The obvious solution is to
generate several system instances and make statistically grounded
statements about the overall average effectiveness.

Experiments in IR add another layer of complexity to our prob-
lem as retrieval effectiveness varies by topic. The effectiveness of a
system is characterized and compared using average effectiveness
under whatever evaluation metric is employed across a set of topics.
Differences are tested for statistical significance across a hypothet-
ical population of topics using a significance test such as the t–test
or bootstrapping, but these standard tests only support one source
of variability (here, in choice of topics). The use of algorithms
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with non-deterministic output introduces an additional dimension
of variability into this scenario. In this paper, we contribute the
following
• We present a methodology to solve the two-dimensional signifi-

cance testing problem (Section 3);
• We explore the properties of our solution on a case study of com-

mon sampling-based algorithms – shard construction and cen-
tralized resource allocation in distributed IR [3, 6]. We exam-
ine the variability that can occur in this environment, observing
that an apparently significant result on one instance of a sample-
based algorithm can be contradicted by another, and we demon-
strate the use of our two-dimensional significance testing meth-
ods to handle the variability and provide sound statistical infer-
ences (Section 4).

• We clarify statistical best-practices on parameter selection when
comparing algorithms for equivalent effectiveness (Section 5).

2. BACKGROUND
For many years, researchers in the IR community have benefited

from shared test collections. A collection includes documents, test
topics, and relevance judgments. Using these shared collections, IR
systems can be compared by calculating the effectiveness of each
using a common metric such as MAP or NDCG. However, argu-
ing that one system is “better” than another simply on the basis
of achieving a higher effectiveness score on a collection is not as
straightforward as it might initially seem. The subtle differences in
average score might just be coincidental to the particular set of top-
ics selected, and may not hold across the full set (or population) of
possible queries and topics. In response, IR research has adopted
the practice of statistical significance testing in order to estimate
the likelihood of two systems being hypothetically equivalent (p
value). A sufficiently low p value implies a systematic difference
that cannot be attributed purely to chance in the selection of top-
ics. Common approaches to significance testing include Student’s
paired t-test, ANOVA, the sign test, the Wilcoxon signed rank test,
Fisher’s randomization test, and bootstrapping.

Another approach to testing the significance of differences in
system effectiveness on a sample set of topics is through linear
modeling. Where variance comes solely through the selection of
topics, the following linear model (equivalent to the t-test and ANOVA)
is applied:

Eij = γ + si + tj + εij . (1)

Here, Eij is the effectiveness of system i on topic j. We model
this effectiveness as due to two factors or effects: the system effect



si (essentially, the effectiveness of the system, relative to other sys-
tems), and the topic effect ti (essentially, the difficulty of the topic,
relative to other topics). The γ term, the intercept in the model, is
the average effectiveness of all systems across all topics, while εij
is the residual or error term, accounting for the deviation of the ob-
served effectiveness from that explained by the model. The p value
for the system effect can either be computed with ∆si/

√

σ2/n
or t-statistic from ANOVA, which follows Student’s t distribution
with n−1 degrees of freedom. Here ∆si is the difference between
the two system effects, σ2 is the variance of the residuals, and n is
the number of topics.

Alternatively, the same can be modeled using a linear mixed ef-

fect (LME) model, consisting of fixed (non-random) and random
effects [2, 5]. For this scenario, sampled topics produce a random
effect, and systems produce a fixed effect. Though, not apparent
at this stage, as we will see later LME can be used to build com-
plex models that capture repeated measurements and hierarchical
grouping. For large samples, the p value can be computed from a
t-statistic obtained from the LME with n − f degrees of freedom,
where f is the number of fixed effect parameters (f = 1 for the
above scenario) [1].

Another way to compute the p value is to generate the posterior
distribution for the system factor using Markov Chain Monte Carlo
(MCMC) simulations. An MCMC simulation repeatedly samples
from the conditional distributions of parameter subsets (σ, parame-
ters defining the variance-covariance for random effects, and fixed
and random effects) of the linear mixed effect model cyclically,
thus making variance of all other parameter subsets reflect the vari-
ance for each parameter subset. The posterior distribution of the
system effect parameter is expected to follow a normal distribu-
tion which can be used to compute the p value [1]. Deriving the
posterior distribution also allows us to obtain the highest posterior
density (HPD) interval which is analogous to the standard confi-
dence interval. A β % HPD interval represents the shortest interval
enclosing (1 − β) % of the posterior probability mass of the dis-
tribution. Therefore, the HPD interval is considered a better repre-
sentation than the standard error interval.

All of the significance testing approaches above assume an IR
system with a deterministic output, where only one observation ex-
ists per topic. However, topical variance can be thought of as com-
bining two components: first, measurement or model error; and
second, the fact that some systems do better on some topics than
others (both systems and topics). If we only have one observation
per topic, we cannot separate these two factors; but if we have re-
peated observations, the two factors can be separately estimated.
Taking system effect as fixed, and topic-system interaction effects
as random, the above can be modeled with LME, as follows:

Eijk = γ + si + tj + tsij + εijk. (2)

Here Eijk is the effectiveness on the k·th observation of system
i on topic j, tsij is the topic-system interaction effect, and εijk
represents the (random) error of a single observation. However, the
model only makes sense if different observations on the same topic-
system pair lead to different scores. In Robertson and Kanoulas
[5], this variability in topic-system scores is observed over different
document sets, whereas in Carterette et al. [2] the variability is in
different user types. Our focus in this paper is on non-determinism
in IR system output due to variability introduced by, for example,
a randomized sampling-based algorithm or an algorithm that ex-
ploits logs of (unpredictable) user input. Hence, variability exists
in two dimensions (system instances and topics), with one (topical
variation) grouped within the other (system instances).

3. OUR APPROACH
Our approach uses the following LME model:

Elmn = γ + al + sm + tn + atln + εlmn. (3)

Here Elmn is the effectiveness observed for topic n on system in-
stance m generated using algorithm l, and γ represents the model
intercept. The factors al, sm, and tn represent effects for the IR
algorithm l, (non-deterministic) system instance m, and topic n
respectively. The topic-algorithm interaction effect is captured by
atln. The unallocated portion of effectiveness Elmn is what resides
in εlmn.

The algorithmic effect is fixed in the above model, where sam-
pled topics, system instances and topic-algorithm interaction pro-
vide the non-deterministic effects. The data for constructing the
above model contains effectiveness (E) and three factors: algo-
rithm (a), system instance (s), and topic (t). If each level of one
factor occurs in every level of another factor, we say the two fac-
tors are crossed. We say they are nested if the levels of one factor
occurring within the levels of another factor are different.

Crossed factors generally result in an interaction effect in the
LME model if they contain repeated measures. The effectiveness
for the same set of topics is measured on each system instance and
each algorithm. Hence, the algorithm and system instance factors
are crossed with the factor topic which results in a topic-algorithm
interaction effect, but not a topic-system interaction effect as we do
not have repeated measurements.

When two non-deterministic algorithms are compared, the sys-
tem instances used for evaluation are different for each algorithm,
which naturally nests the system instance factor within the algo-
rithm factor. However, if one of the algorithms in the comparison
is fully deterministic, a crossed design can be used whereby each
level of the system instance factor for the deterministic algorithm
is a replicate. The p value for the algorithm factor can be computed
with n − 1 degrees of freedom in the same manner described in
Section 2.

Note that our model in Equation 3 differs from the model in
Equation 2, as used by Robertson and Kanoulas [5] and Carterette
et al. [2]. In the latter model, they regard the observations on the
non-topic factor (respectively, document sets, and user type) sim-
ply as providing repeat observations of the topic-system interac-
tion, and not as having a systematically grouped effect.

4. CASE STUDY
We now turn our attention to a concrete example. Sharding is

a well-known technique to divide very large document collections.
The technique is used in distributed IR to allocate and index shards
of the collection on the different nodes of a cluster. In such a con-
figuration, retrieval is performed across multiple indexes, one per
node. Efficiency can be improved if the query is only sent to a sub-
set of the indexes. The question then becomes how many indexes
should be queried without causing a measurable loss in retrieval ef-
fectiveness. To efficiently and effectively select the best subset for
each query, a widely-used approach is to create a centrally held in-
dex composed of documents sampled from each shard. This central
sample index (CSI) is used to represent the true collection statistics
[6].

Recent research has focused on reducing the search cost per
query without hurting overall effectiveness by reordering the doc-
uments in each shard by topic or similarity [3]. These systems are
able to achieve effectiveness close to a search over the entire col-
lection (exhaustive search) while using only a few shards for each



CSI t–test t–test Comparing with Comparing two
sample p value p value exhaustive search non-deterministic
rate (%) < 0.05 < 0.1 (p value) algorithms (p value)

0.01 100% 100% 0.0000 0.0000
0.05 59% 76% 0.0007 0.0000
0.1 21% 31% 0.0601 0.0000
0.5 3% 10% 0.8990 0.0270
1.0 0% 2% 0.9325 0.0991
2.0 1% 2% 0.8748 0.2141
3.0 1% 1% 0.8407 0.3483
4.0 0% 2% 0.7456 1.0000

Table 1: The proportion of system instances that demon-

strated a significant difference using a paired t-test, and the

p values when comparing the sample-based IR algorithm pro-

posed by Kulkarni and Callan [3] at varying CSI sample rates

with a deterministic exhaustive search, and with itself (a non-

deterministic algorithm) with a CSI sample rate of 4% using

the TREC GOV2 dataset and TREC topics 701 – 850.

query. However, many clustering and classification algorithms are
not able to scale to the typical size of a modern IR collection and
therefore resort to sampling and k-means clustering to reorder the
shards. Each time such an algorithm is run (i.e. there is a new
system instance) distinct shards will be formed.

For the purpose of this study, we reexamine the problem of de-
termining the optimal CSI sampling rate, originally presented by Si
and Callan [6]. To select a subset of shards for a given query, the
CSI is searched first. The proportion of documents from each shard
in the CSI search results are then used to rank shards for a given
query. Therefore, the time spent on searching the CSI is a key fac-
tor determining query response time. The CSI search time is corre-
lated to the sampling rate used to construct the CSI and the query
difficulty. The sampling rate used for constructing the CSI must be
sufficiently high to represent the shard in order to avoid poor re-
trieval effectiveness. A high sampling rate can also minimize the
likelihood of encountering out-of-vocabulary (OOV) terms in the
mapping of the CSI to the shards. This is a classic effectiveness
and efficiency trade-off problem, whereby the best query response
time is achieved when the sample rate is set to the smallest level that
still achieves similar effectiveness to that resulting from exhaustive
search.

4.1 Experimental testbed
Experiments are performed on the TREC GOV2 dataset, using

topics 701–850. Using two independent 1% samples of the dataset,
5 topically-partitioned distributed IR system instances are formed
for each sample using a k–means clustering algorithm. Thus, we
have 10 different instances of the sharded index. As with the orig-
inal experiments [3], 50 shards were formed per instance, and the
full dependency model (FDM) is used to rank the queries [4]. Se-
lecting a subset of 5 shards produced equivalent retrieval results at
depth 10 to exhaustive search [3]. Therefore, only the top 5 ranked
shards are searched for each query. For each of the sharded ver-
sions, 10 CSI instances are formed for each sampling rate, giving
100 instances in total for each sample rate. NDCG@10 is used as
the evaluation metric in all experiments.

4.2 Results
Each individual system instance is compared with the exhaus-

tive search baseline using a paired t–test, and the overall compari-
son with the proposed approaches are analyzed in Table 1. As can
be seen, the number of IR system instances that were significantly
different to exhaustive search increases as CSI sampling rates are
reduced. Some individual comparisons show a significant differ-
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Figure 1: Topical variance for TREC topics 826 – 850 observed

with IR system instances produced with the topical sharding al-

gorithm proposed by Kulkarni and Callan [3] on TREC GOV2

dataset with a CSI sampling rate of 4%.

ence between two IR system instances while the rest agree on no
such difference. For example, at CSI sampling rate of 0.5%, 3%
of the comparisons show a significant difference at α = 0.05, and
10% at α = 0.1. This exemplifies the potential of drawing an in-
accurate conclusion, and the difficulty of confidently comparing a
single IR system instance produced by a non-deterministic algo-
rithm. We could report the mean effectiveness for each topic across
a large number of non-deterministic system instances to reduce the
likelihood of producing conflicting results. But this may not re-
sult in a fair comparison, as variance due to non-determinism is not
explicitly captured in such an evaluation framework.

The variance in effectiveness for TREC topics 826 – 850 across
100 topically partitioned distributed IR system instantiations are il-
lustrated in Figure 1. While effectiveness for some topics are con-
sistent, others are clearly not. A shift in mean effectiveness due to
outliers is also observed for several topics. Our proposed approach
for significance testing can be used to eliminate such ambiguity and
help researchers derive more accurate conclusions.

A comparison of the non-deterministic algorithm at varying CSI
sample rates with deterministic exhaustive search and with the same
algorithm at a CSI sample rate of 4% is also presented in Table 1.
The results verify the suitability of the proposed approach for eval-
uating non-deterministic algorithms.

We have now discussed the value in using two dimensional sta-
tistical significance tests when comparing sample-based algorithms.
Assessing similarity when uncertainty is involved even with one
source of variability is a concept that has not been broadly ad-
dressed by the IR community. Building on the case study, we now
outline one possible statistical approach that can be used to com-
pare non-deterministic systems for equivalence.

5. PROMOTING BEST PRACTICE
A statistical significance test cannot be used to “prove” a null

hypothesis. The null hypothesis is, in reality, a statistical straw
man. Even if we were to believe that two systems have identical
population mean scores, we cannot use the methods of inferential
statistics directly to perform the test. Statistical inference works
probabilistically from the evidence of a sample; exact identity can
be determined only by exhaustive examination of the population.



Type H0 Desired outcome Inference Encouraged behavior

Bad MA = MB Fail to reject Systems “statistically indistinguishable” Reduce sample size
Good |MA − MB | ≥ δ0 Reject Difference in systems is significantly less than consequential Increase sample size

Table 2: Two ways of testing for significance the “equivalence” of system A against system B.
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Figure 2: The 95% highest posterior density (HPD) interval

for comparison of the topical sharding algorithm proposed

by Kulkarni and Callan [3] with exhaustive search on TREC

GOV2 dataset and TREC topics 701 – 850.

Even if we believed the null hypothesis, and even if we could es-
tablish it statistically, using the failure of a significance test to do
so is bad practice. A researcher desires to find no statistical sig-
nificance (that is, to fail to reject the null hypothesis) in order to
confirm an experimental objective. The way to increase the likeli-
hood of this happening is straightforward: decrease the sample size
(for example the number of topics or for randomized techniques
the number of randomizations), and you decrease the likelihood of
finding statistical significance.

If we wish to use hypothesis testing to establish statistically sig-
nificant “equivalence”, a better practice is to proffer the smallest
difference in mean performance, δ0, that we would regard as being
consequential. Here, |MA −MB | ≥ δ0, becomes the null hypoth-
esis; and |MA −MB | < δ0 is the alternative hypothesis. We then
test against the null hypothesis; if the test rejects it, we accept the
alternative, and conclude that the difference between system A and
system B is no more than δ0: the systems are effectively equiva-
lent. This process not only makes statistical sense, it also drives
good practice: the experimentalist is incentivized to increase the
size of the test set and thus the accuracy of the measurements.

The pros and cons of these two methods of testing for statistically
significant equivalence are summarized in Table 2.

5.1 Non-deterministic significant equivalence
We now examine our case study. A possible goal is to find the

minimum CSI sampling rate that is still able to achieve “equivalent”
effectiveness to the exhaustive solution, namely a complete central
index. We set δ0 = 0.01. If a sampling rate with the CSI method
causes an absolute difference less than δ0 in mean NDCG@10
scores, we will regard it as equivalently effective to the full index.
Therefore, we test the null hypothesis of |MA−MB | ≥ δ0 for each

sampling rate, and choose the smallest sampling rate for which this
null hypothesis is rejected.

The null hypothesis can also be tested indirectly by computing
the highest posterior density (HPD) interval using the posterior dis-
tribution for the algorithm factor of the LME model. The HPD in-
terval of the algorithm factor gives a 95% confidence interval on
the true difference between the mean performance of the sampled
and exhaustive indexes. If the confidence interval is within the lines
±δ0 then we reject the null hypothesis and conclude that the sys-
tem MB is equivalently effective to system MA. However, if the
confidence interval covers values, below or equal to −δ0, or above
or equal to +δ0, then the null hypothesis cannot be rejected.

We show the HPD interval for different CSI sample rates in Fig-
ure 2. Sampling rates below 0.05% are clearly worse than exhaus-
tive search. For sample rates above 0.1%, a portion of the confi-
dence interval is greater than −δ0. Therefore, the sampled index
may not be consequentially worse than the exhaustive one, but we
can not draw a conclusion with any confidence. It is not until the
sampling rate reaches 1% that the confidence interval is above −δ0.
But, for these sampling rates part of the confidence interval is above
+δ0. Therefore, we cannot conclude with confidence that the sam-
pled method is equivalently effective to exhaustive method. But
the fact that the confidence interval is above −δ0 allows us to say
that the method is greater than or equivalently effective (that is, not
consequentially worse than) than the exhaustive method for CSI
sampling rates of greater than 1%.

6. CONCLUSION
In this paper we have explored the potential pitfalls of depend-

ing on a single instance of a non-deterministic system for evalu-
ation. In order to alleviate this problem, we introduce the notion
of two-dimensional significance and describe a sound methodol-
ogy to compare non-deterministic systems. In future work, we will
explore how best to safely compare these systems for equivalence
directly.
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