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ABSTRACT
Score-safe index processing has received a great deal of attention
over the last two decades. By pre-calculating maximum term im-
pacts during indexing, the number of scoring operations can be
minimized, and the top-k documents for a query can be located
efficiently. However, these methods often ignore the importance of
the effectiveness gains possible when using sequential dependency
models. We present a hybrid approach which leverages score-safe
processing and suffix-based self-indexing structures in order to pro-
vide efficient and effective top-k document retrieval.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—indexing methods; H.3.2 [Information Storage and
Retrieval]: Information Storage—file organization; H.3.3 [Inform-
ation Storage and Retrieval]: Information Search and Retrieval—
query formulation, retrieval models, search process; I.7.3 [Docu-
ment and Text Processing]: Text Processing—index generation

General Terms
Text indexing; text compression; experimentation; performance

1. INTRODUCTION
Search engines rely on fast evaluation of ranking computations.

Formulations based on bag-of-word queries and TF×IDF-type scor-
ing mechanisms have been in use for several decades, and users are
now accustomed to expressing their information needs via short
keyword-based queries. One promising approach to improving the
effectiveness of bag-of-words querying is term dependency mod-
eling [12], which include statistics based on phrase combinations
into the retrieval mechanism, to favor documents in which query
terms appear consecutively, or near each other in unordered win-
dows. The objective is to create a more favorable ordering than is
achieved by a bag-of-words computation.

To process term-dependency queries, standard inverted index-
based techniques can be augmented in two different ways. The
first pre-defines queryable phrases at index construction time and
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includes information about them in the index, so that those phrases
are automatically supported during query evaluation. The second
approach includes word positions within the inverted index, so that
arbitrary phrases can be identified during query evaluation. Com-
pared to a document-level inverted index suited for bag-of-words
retrieval, the first option has the disadvantage of either requiring a
substantially enlarged inverted index or limiting the set of phrases
that are supported; while the second option uses a smaller index,
but needs additional processing when phrases are part of the query.
Compromises between these two implementation options are also
possible. Zobel and Moffat [20] give an overview of indexing and
searching using inverted files.

The last decade has seen the emergence of other techniques, in-
cluding self-indexing methods derived from suffix arrays and the
Burrows-Wheeler transformation (BWT), following initial work by
Muthukrishnan [13]. Until recently, these techniques were “single
term” and based solely on occurrence frequency, reporting a ranked
list of documents in decreasing frequency order in which any sin-
gle fixed string of characters or words appears. That is, they report
“top-k” for one-term queries, with “top” based on frequency alone.
More recent work has explored the use of bag-of-word similarity
computations, and stepped closer to the functionality that can be
supported using document-level inverted indexes [3].

Our contribution. We implement term-dependency similarity mod-
els using suffix-based indexes, including combining single terms
with multi-term phrases, and present an efficient safe-to-k approach
for processing bag-of-word and phrase-based queries. Our method
combines both pre-calculation and on-the-fly processing in order
to achieve attractive time/space trade-offs, and demonstrates that
multi-term queries can be processed using a suffix-based index more
quickly than is possible using an inverted index alone.

2. PHRASE INDEXING AND QUERYING
Metzler and Croft [12] describe the use of query term depen-

dencies to increase the effectiveness of similarity-based retrieval
techniques. They make use of two operators, “ordered window”
phrases, in which two or more of the query terms appear in a doc-
ument in the sequence in which they appear in the query, and “un-
ordered windows” in which two or more of the query terms appear
within some specified distance of each other, but not necessarily
adjacent, and not necessarily in the order in which they appear in
the query. Metzler and Croft assign 80% of the final score of the
document to a bag of words computation, 10% to ordered phrases,
and 10% to unordered windows.

In the approach used here, scores are based on terms and a com-
plete set of ordered phrases from the query. For example, the query
“arthur conan doyle” is processed as a total of six components: the



three terms, plus two 2-grams “arthur conan”; and “conan doyle”
plus the 3-gram “arthur conan doyle”. Including the t singletons,
a query of t terms has t(t + 1)/2 different components, each of
which is scored across the collection as if it were a separate term.

Intersection-based phrase discovery. The simplest way of query-
ing term m-grams is to store and process position offsets as part of
an inverted index [20]. At query time, the various terms’ postings
lists are combined, and when terms co-occur in a document, a more
detailed intersection operation is carried out to check for positional
adjacencies. We call this the intersect method; for example, to
create a query-time postings list for a phrase of m terms t1 to tm,
the postings lists for the phrases t1 . . . tm−1 and t2 . . . tm are in-
tersected, with the base case supplied by the stored postings lists in
the term-level inverted index.

Adding position offsets to the term-level inverted index of a typ-
ical document collection approximately doubles its size, a reason-
able overhead; and when terms are infrequent, intersection of list
components is also reasonably fast. But when long lists for com-
mon terms are involved, for example, in “the president of the united
states”, query processing can be costly.

Score-safe processing. A technique is score-safe if it guarantees
that the top-k documents are the same as an exhaustive processing
regime would generate. Score-safe methods include MaxScore [17],
WAND [1], and BlockMax WAND (BMW) [4, 5]. All rely on a
key insight: if the ranking metric is summative over terms, and if
the maximum “contribution to any document” score of each term
across the collection (or in the case of BMW, over a part of the
collection) is known, then an evolving subset of the terms can be
identified such that any document that might be added to the top k
must contain at least one term in that set. Hence, attention can be
restricted to documents containing one or more of those terms.

3. SUFFIX-BASED SELF-INDEXING
The FM-INDEX, introduced by Ferragina and Manzini [6], is a

data structure used for pattern matching. Building on the suffix ar-
ray, it also incorporates ideas embedded in the Burrows-Wheeler
transform. A character-level FM-INDEX for a text can be stored
in a fraction of the space occupied by the text itself, and provides
pattern search and (with small overhead) random-access decoding
from any location in the text. To build a word-level FM-INDEX,
the input T is parsed into case-folded stemmed words exactly as
for any other type of index, and retained as a sequence of word
identifiers,W , relative to a vocabulary. An end-of-document sen-
tinel is inserted after each document inW .

The sequence of integers is provided as input to a suffix-sorting
algorithm, after which the FM-INDEX is constructed and stored.
The FM-INDEX stores the symbols ofW in a suffix-permuted or-
dering, WBWT, which allows efficient access, search and extrac-
tion of W using space equivalent to the compressed representa-
tion of the input. A third structure used during querying is the
n-element document array, or D-array, which notes, for each el-
ement of WBWT[i], the document number from which that word
originated [13]. Each value D[i] requires log d bits, where d is the
number of documents in the collection;D takes n log d bits in total.

Single term query processing. Single term queries are processed
as follows. First, the query is mapped to a sequence of integers,Q,
using the vocabulary. Using the FM-INDEX, a rangeWBWT[sp..ep]
is determined which corresponds to all suffixes inW prefixed byQ.

The corresponding range in the D-array, D[sp..ep] now contains
all document identifiers containingQ.

The interval D[sp..ep] corresponds to the total number of oc-
currences of Q in W , which can be large; and hence processing
D[sp..ep] efficiently is critical to overall query performance. Var-
ious schemes have been proposed to identify the top-k most fre-
quent document identifiers in D[sp..ep]. Culpepper et al. [2] show
that if D is stored as a wavelet tree, the top-k documents can be
found quickly in practice, but without a worst-case guarantee. Hon
et al. [8] present a data structure that augments the D-array in or-
der to provide worst-case bounds on both execution time and space.
Their HSV mechanism pre-computes top-k result lists for a set of
pre-determined [sp..ep] intervals, guaranteeing that only relatively
small ranges are processed exhaustively at query time. Recently,
Konow and Navarro [10] presented a compact data structure which
efficiently retrieves the top-k most frequent documents indepen-
dently of the size of the range [sp..ep].

Beyond single term top-k frequency retrieval. In the methods sum-
marized so far, “top-k” has the semantics “return the k documents
which contain the most occurrences of the pattern”. These ap-
proaches cannot be easily adapted to process more complex queries.
For example, the formulation of the LMDS similarity computation
includes a range of factors, meaning that the top-k answer set to a
query over two or more terms is not constrained to lie within the
union of the terms’ independent top-k answer sets.

Sadakane [15] described a support data structure which com-
putes the number of unique document identifiers in D[sp..ep] in
constant time. Sadakane used this structure to support exhaus-
tive processing over [sp..ep], and hence calculate a simple TF×IDF
based similarity metric. Culpepper et al. [3] adopt the HSV data
structure [8] in combination with a wavelet tree-based representa-
tion [2] to compute similarity scores for multi-term queries. Their
scheme retrieves a fixed number of most frequent document iden-
tifiers for each query term, and combines them to retrieve a ranked
document listing, an approach that gives competitive runtime per-
formance for k ≤ 100, but is not score-safe.

4. A BLEND OF TECHNIQUES
We build on the previous work, and explore ways of implement-

ing more complex score-safe query semantics – in particular, the
sequential dependency model outlined earlier. The approach de-
scribed shortly is a hybrid, consisting of a pruned suffix tree of
document-level postings lists to efficiently handle large intervals,
and fast sequential exhaustive processing of smaller sections to cre-
ate document-level postings lists on-the-fly.

Pruned suffix tree. The set of intervals in the D-array that can be
generated by the FM-INDEX correspond to the internal nodes of a
suffix tree over T . The HSV mechanism [8] attaches partial pre-
computed postings lists to nodes within that suffix tree, in order
to compute the top-k (by frequency) values at any suffix tree node
using a controlled amount of time. The length of each posting list
is determined by the size of the corresponding [sp..ep] interval, the
number of sampled points within it, and its location in the suffix
tree overW; and is strategically balanced so as to achieve attractive
time and space bounds.

We return to a simpler scheme which embeds several observa-
tions that apply to similarity metrics. Instead of the differing-length
lists of the HSV structure, we store full postings lists every node
in the suffix tree that corresponds to an interval wider than Tmin,
and compute postings lists on-the-fly for [sp..ep] intervals that are



smaller. That is, we store a pruned suffix tree (PST) of full post-
ings lists, for a subset of the intervals. A second threshold Tmax is
also defined – postings lists are not stored for intervals greater than
Tmax = d (the number of documents in the collection), since such
terms have negligible bearing on the LMDS similarity computation.

Query evaluation. When a query identifies a small [sp..ep] inter-
val, a posting list is computed from the D-array via a sequential
cache-friendly process in O(ep − sp) time. The longer the phrase
and more precise the interval, the faster this computation is.

The thresholds Tmin and Tmax allow index space and execution
cost to be traded – the broader the band between the thresholds, the
larger the index, and the faster that query evaluation can be carried
out. Our query processing scheme is summarized as follows: (1)
determine for each query component (including all phrase compo-
nents) the corresponding [sp..ep] interval using the vocabulary and
the FM-INDEX; then either (2a) retrieve the posting list from the
PST if Tmin ≤ ep − sp ≤ Tmax, or (2b) create the postings list
on the fly by processing D[sp..ep] if ep − sp < Tmin; then (3) ap-
ply DAAT or MaxScore or WAND or BMW to the complete set of
postings lists to identify the top-k documents.

5. EXPERIMENTS
We took the TREC GOV2 collection, containing 426GB of web

pages crawled from the .gov domain, and applied the Boilerpipe
software package1 to generate a plain text version occupying90GB.
A total of 150 test topics and corresponding relevance judgments
are available for this collection (topics 701–850). Algorithms were
implemented using C++ and compiled with gcc 4.8.1 with –O3 op-
timizations; and experiments were run on a 24 core Intel Xeon E5-
2630 running at 2.3 GHz using 256GB of RAM. All efficiency
runs are reported as the mean or median of 5 consecutive runs of a
sequence of at least 100 queries for a given query length, and cor-
respond to fully in-memory evaluation, under optimal conditions.
All results shown in this short paper are for identification of the top
k = 100 documents, and with Tmin = 64,000. Other combinations
of parameters will be explored in a full paper.

Each postings list is stored and compressed in blocks of 128 en-
tries using the FastPFOR library [11]. All methods can take advan-
tage of block representatives to allow faster skipping of list entries.
Position offsets are stored using the succinct storage scheme of Vi-
gna [18]. The FM-INDEX, the position offset representation, and
the PST are implemented using the sdsl library [7].

Baseline performance. Table 1 shows the effectiveness of NewSys
relative to Indri2 and Atire [16]. The FDM model uses both phrase
expansion and unordered-window proximity. Our approach uses
only the phrase expansion component, and provides a compromise
between the lesser effectiveness achievable using the efficient BOW
approach, and the more complex FDM mechanism.

Figure 1 shows the effect that length has on query execution time
for score-safe processing methods, using queries drawn randomly
from the TREC million query set. The times reported in Figure 1
do not include phrase postings list creation cost, and cover only
raw posting list evaluation cost after all required lists have been
generated. The sequence of improvements arising from score-safe
heuristics – WAND and BlockMax WAND (BMW) – is clear.

Improvements. The bars in Figure 2 show the relative cost of dif-
ferent approaches to on-the-fly construction for index lists that are
1https://code.google.com/p/boilerpipe/
2http://www.lemurproject.org/indri.php

System Factors MAP

NewSys BOW 0.278
Atire BOW 0.279
Indri BOW 0.280

NewSys Phrase 0.298†
Indri FDM 0.317†
Best Known Unknown 0.334†

Table 1: Effectiveness (MAP) on GOV2 for topics 701–850. The
“Best Known” system is uwmtFadTPFB from the TREC 2006 Ter-
abyte Track. All systems use Krovetz stemming, the LMDS simi-
larity formulation with µ = 2500, and Boilerpipe preprocessing. A
† represents p < 0.05 using a paired t-test against the BOW runs.
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Figure 1: Query time distribution for different processing ap-
proaches using GOV2 and query lengths from 1 to 10. Note the
logarithmic vertical scale.

not in the pruned index, normalized (at each query length) to the
cost of processing the query using the exhaustive DAAT approach.
The horizontal lines show the relative costs of different process-
ing strategies, as already shown (in absolute terms) in Figure 1,
normalized against the same reference costs. That is, the bars cor-
respond to different ways of generating a full set of component
postings lists, and the horizontal lines to different ways of then
computing (the same top-k) document scores from those postings
lists. A retrieval mechanism requires both steps. In Figure 2 the
method labeled intersect is the baseline intersection-based ap-
proach; darray is our hybrid approach with phrases below the
threshold Tmin generated on the fly from the stored D-array; and
intersect-ppst is described shortly.

Figure 2 shows very clearly that sequential processing of the
D-array is far more efficient than generating postings lists from
an inverted index via iterated intersections. The longer the query,
the greater the advantage. Also worth noting is that iterative inter-
section dominates the similarity computation: intersect+BMW
is only marginally faster than intersect+DAAT. Using the pro-
posed darray approach the full benefits of BMW can be realized.

Table 2 lists timings for the queries shown in Figure 2. These
times should be regarded as being indicative rather than precise: In-
dri and Atire were run with standard out-of-the-box configurations
and each query was measured after a pre-execution to bring the re-
quired data in to memory; but the timings might still not be exactly
like-for-like. Even so, the new approach provides clear benefits.
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Figure 2: Relative query costs, normalized so that the list process-
ing time using the DAAT strategy is rated at 100.0%.

System Factors t = 2 t = 4 t = 8

Atire BOW 501 1814 5920
Indri BOW 270 1580 9844
NewSys Phrase 57 292 1084

Table 2: Average query processing time (milliseconds) on GOV2.
The NewSys implementation uses the darray+BMW combination.

The performance advantages of the darray method come at a
cost. It uses a total of 97GB for the FM-INDEX, the PST, and the
D-array; whereas the intersect method requires only 33GB for
a positional inverted index over terms. An obvious question is: can
this space difference be used instead to index a subset of important
phrases? Several authors have suggested just such a trade-off ap-
proach in which a subset of important phrases is added to the index
(see Section 6). The intersect-ppst method shown in Figure 2
offers a pragmatic compromise between using position offsets for
each term to generate the phrase components, and indexing all pos-
sible phrases. Since the PST already captures all possible phrases
of frequency between Tmax and Tmin, we can add positional offsets
to those inverted lists, covering the intermediate lists needed to con-
struct postings lists for long phrases. Any remaining lists required
are still generated on demand using iterated intersection. With the
same value of Tmin, this approach requires 101GB, and t = 5
term (15 component) queries take an average of 1,700 millisec,
compared to 400 millisec for the darray, and 5,800 millisec for
intersect. That is, for our chosen query semantics the darray
offers superior performance even when compared to a similar-sized
inverted index that includes positional postings lists for all phrases
(of any length) that occur more than Tmin times.

6. RELATED WORK
Williams et al. [19] propose a modified inverted index, in which

each posting list includes a record of what the next terms in the doc-
ument are. Williams et al. also index common phrases as a single
term within an inverted index in order to increase the efficiency of
n-gram processing. Other researchers have also explored indexing
common phrases, for example, Huston et al. [9] and Ozcan et al.
[14]. These approaches provide efficient querying, but also have
disadvantages: the phrase length is usually fixed at indexing time;

index sizes can grow quickly; and infrequent phrases might not be
recorded in the index at all.

7. CONCLUSION
We have explored algorithmic components that can be used to

support efficient phrase querying as a contributing factor in docu-
ment similarity ranking using term dependency models. While the
complete system is still not as effective as the best available sys-
tems (which make use of non-consecutive term pairs, and/or query
expansion), the efficiency advantages of the BWT-based index are
appealing. The BWT-based systems can also support arbitrarily
long exact match phrase queries with no additional space costs be-
yond the fixed D array overhead. Indeed, as the phrases get longer,
the processing time gets faster, since the corresponding [sp..ep] in-
terval gets smaller.
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