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Abstract. Batched evaluations in IR experiments are commonly built using rele-
vance judgments formed over a sampled pool of documents. However, judgment
coverage tends to be incomplete relative to the metrics being used to compute
effectiveness, since collection size often makes it financially impractical to judge
every document. As a result, a considerable body of work has arisen exploring
the question of how to fairly compare systems in the face of unjudged documents.
Here we consider the same problem from another perspective, and investigate the
relationship between relevance likelihood and retrieval rank, seeking to identify
plausible methods for estimating document relevance and hence computing an in-
ferred gain. A range of models are fitted against two typical TREC datasets, and
evaluated both in terms of their goodness of fit relative to the full set of known
relevance judgments, and also in terms of their predictive ability when shallower
initial pools are presumed, and extrapolated metric scores are computed based on
models developed from those shallow pools.

1 Introduction

A comprehensive set of judged documents derived from human relevance assessments
is a key component in the successful evaluation of IR systems. However, growing col-
lection sizes make it prohibitively expensive to judge all of the documents that are po-
tentially relevant, and sampling methods such as pooling [15] are now commonly used
to select a subset of documents to be judged. Partial judgments present an interesting
challenge in carrying out reliable evaluation, and can result in subtle problems when
comparing the quality of two or more systems.

The main issue arising from partial judgments is how to handle unjudged docu-
ments during evaluation. One simple rule – and the one often used in practice – is to
assume that all unjudged documents are non-relevant. Although an evaluation score can
be obtained using this assumption, any conclusions drawn may be a biased view of a
system’s relative performance. Two approaches to handling these issues have been pro-
posed: metric-based solutions [1, 3, 5, 9, 11, 17, 18], and score adjustment [7, 10, 16].
Metric-based solutions can be further categorized as those that ignore the unjudged
documents, and work only with the known documents; and those that attempt to infer
the total relevance gain achieved by the system, or, at least, to quantify the extent of
the uncertainty in the measured scores. Score adjustment approaches require a differ-
ent type of collection pooling process, which can greatly impact the reusability of the
test collection. They also seek to minimize the bias between the pooled and unpooled
systems, which is different than the pooling depth bias. Pooling depth bias can occur in



contributing systems as well as new systems since using a pooling depth less than the
evaluation depth can result in unjudged documents occurring in any system ranking.

Here we consider traditionally pooled collections, and consider the problem from
a fresh angle: does the rank position of a previously unseen document influence the
likelihood of it being relevant, and if so, can that relationship be exploited to allow
more accurate system scores to be computed? Our estimations of gain based on rank fit
well with weighted-precision metrics, and allow both types of bias to be incorporated
when performing evaluations. In particular, we measure the aptness of several possible
models that build on existing judgments, from which we obtain an observed likelihood
of relevance at different ranks. The benefit of assessing relevance as a function of rank
is that the model can be applied both within the original pooling depth and also beyond
it. A further advantage of the proposed approach is that in making the model topic-
specific, it automatically adapts to differing numbers of relevant documents and to query
difficulty, both of which can vary greatly across topics.

As a specific example of how our techniques might be employed, we consider the
rank-biased precision (RBP) metric [9], which computes a residual as a quantification
of the net metric weight associated with the unjudged documents in a ranking. Using
an estimator, a value within that identified residual range can also be computed, and
given as a proposed “best guess” score. To demonstrate the validity of our proposal,
empirical studies are conducted on two representative TREC datasets: those associated
with the 2004 Robust Track; and with the 2006 Terabyte Track. The first collection
is believed to be relatively complete [13], while the second is understood to be less
comprehensive [8, 12]. The proposed models are fitted using topics in the two datasets
and compared using a standard goodness-of-fit criterion at different nominal pooling
depths. We then explore the predictive power of those models, by comparing extrapo-
lated system scores generated from shallow-depth pools with the corresponding scores
computed using deeper pools.

2 Background

Batch IR evaluations require a set of judgments for each included topic. Pooling [15] is
often used to generate those judgments, but has limitations, since there is no guarantee
that all relevant documents for a topic are identified. The usual way of handling that
problem during evaluations is to assume that unjudged documents are not relevant.
Incomplete judgments have been shown to have little effect in the NewsWire collections
[19], but the evaluation results in larger web collections can be biased [2]. As a result,
several strategies for dealing with unknown documents have been developed [1, 3, 5,
7, 9, 10, 11, 16, 17, 18]. Broadly speaking, these strategies can be categorized into
two types – metrics that deal in some way with the missing judgments, and methods for
adjusting the bias. Figure 1 provides a taxonomy of approaches, which we now explore.

Metrics for Incomplete Judgments Widely used metrics such as AP and NDCG [6]
were developed on the assumption that the judgments were complete. When they are
used with incomplete judgments, unjudged documents are typically assumed to be non-
relevant during the calculation process, an assumption that can result in underestimating
the effectiveness of a system if it returns many unjudged documents, or overestimating
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Fig. 1: A taxonomy of approaches for minimizing the effects of unjudged documents
on system evaluation.

the effectiveness of all systems if there are many undetected relevant documents. Alter-
native approaches have been proposed that use only the documents which are judged,
including condensed scoring [11, 17], and BPref [3]. Sakai [11] compared different con-
densed metrics with BPref and concluded that condensed Q-measure and NDCG work
well in practice, and have a higher discriminative power than BPref.

In a quest to make better use of both judged and unjudged documents, metrics using
inference [17, 18] have also been proposed. For example, InfAP [17] estimates the pre-
cision at ranks where relevant documents occur, and assumes that relevant documents
are distributed uniformly between identified ranks. A drawback is that inferred met-
rics depend on pools being constructed using a predefined sampling method. A recent
study by Voorhees [14] concluded that a two-strata sampling is a suitable method for
constructing collections for inferred metrics.

The metric StatAP [1] embeds another approach to sampling based estimation by
deploying importance sampling when judgment pools are created in order to minimize
the likelihood of missing relevant documents. StatAP estimates precision based on a
joint distribution derived from the relevance probability of a pair of ranks. The total
number of relevant documents is estimated via a uniform sampling process over a depth
100 pool. Combining both estimates produces the final StatAP score. Both InfAP and
StatAP have been shown to be highly correlated with AP when the judgments are incom-
plete, using a range of collections [17, 18]. However, inferred metrics and StatAP are
reliant on specific sampling strategies being followed when pool construction occurs,
meaning that applying these methods on unpooled systems may not be appropriate.

The final metric-based approach is to provide both the minimum and the maximum
effectiveness score for a system, using the notion of a residual that was introduced
alongside Rank-Biased Precision (RBP) [9]. Instead of generating a point effectiveness
score, RBP provides a lower and an upper bound, with the gap between them repre-
senting the extent of score uncertainty associated with the unjudged documents. RBP
supports traditional score-based system comparisons, and also provides quantitative ev-
idence of the potential impact the unjudged documents may have on that comparison.

Score Adjustments Based on Estimated Relevance The alternative is to try and adjust
for the bias. The first option is to compensate for system bias – the difference between
pooled and unpooled systems when using a fixed pool depth – using either a metric-
based approach [7, 10, 16] or a metric-independent approach [5]. Based on RBP@10,
Webber and Park [16] propose adjustment methods to deal with the inference from sys-



tems and from topics. In separate work, Ravana and Moffat [10] propose estimation
schemes for picking a point within the RBP residual range: a background method; an
interpolation method; and a smoothing method that blends the first two. Although Ra-
vana and Moffat primarily focus on system bias, their results also indicate that the same
approaches could be applied to adjust the bias resulting from a limited pooling budget.

Recent work by Lipani et al. [7] views the problem from another perspective, propos-
ing an “anti-precision” measure in order to determine when to correct the pooling bias.
By using a Monte Carlo method to estimate the adjustment score to be added to a run,
Lipani et al. empirically obtain better results than previous work. Lastly, Büttcher et al.
[5] consider the problem independent of the evaluation metric. By transforming bias
adjustment into a document classification problem, the relevance of a document can be
predicted to minimize rank variance when a leave-one-out experiment is applied.

Most of this prior work has focused on adjusting the bias between pooled and un-
pooled systems. When the pooling budget is limited, condensed runs and BPref may
be vulnerable to relatively high score variance. Residual-enabled metrics such as RBP
at least allow this variance to be quantified, but do not necessarily provide any way of
drawing useful conclusions. Sampling methods and inferred metrics may be of some
benefit in this regard, but give rise to different issues when systems not contributing to
the original pool are to be scored. It is this set of trade-offs that motivates us to revisit
the question of system comparisons in the face of a limited pooling budget.

3 Models and Analysis

We now describe methods for modeling relevance as a function of ranking depth.

Gain Models Consider a weighted-precision metric such as RBP, which is computed
as

∑∞
i=1W (i)·ri, whereW (i) is the ranking-independent weight attached to the item at

rank i according to the metric definition, and ri is the gain associated with that i th item
in the ranking generated for the topic in question. When the judgments are incomplete,
and the value rj is not known for one or more ranks j, we propose that an estimated
gain r̂j be used, where r̂j is computed via a model of relevance in which topic and
retrieval rank j are the inputs.

Focusing on a single topic, we let 〈rk,n〉 be a gain matrix spanning n systems that
have contributed to a pooled evaluation to a maximum run length (or evaluation depth)
of k = d, so that ri,s is the gain attributed to system s by the document it placed at
rank i. The empirical gain vector g = 〈g1, g2, . . . , gk〉 is then:

gi =
1

n

n∑
j=1

ri,j . (1)

A gain model is a function G(g, k) that generates a value ĝk as an approximation for
gk, the empirical gain at rank k. For example, one simple gain model is to assert that
if a document is unjudged its predicted gain is minimal, that is, G0(g, k) = mingain,
where mingain is the lower limit to the gain range and is usually zero. This is the
pessimal approach to dealing with unjudged documents that was discussed in Sec-
tion 2. Similarly, the residuals associated with RBP combine G0() at one extreme, and



Model Description Parameters Assumptions

Gs (maxgain− mingain)/2 –
Static, constant across all
ranks

Gc

{
λ0 1 ≤ k ≤ m
0 k > m

λ0,m
Constant until rank m, zero
thereafter

G` max{−λ0 · k + c, 0} λ0 ≥ 0, c
Linear, decreasing until rank
m, zero thereafter

Gz λ0/(k
c ·Hn,c) λ0, c ≥ 0

Zipfian, monotonic
decreasing, never zero

Gw λ0 ·
(
(1− λ1)

(k−1)c − (1− λ1)
kc
) λ1 ∈ [0, 1],

c > 0, λ0

Weibull, might increase
before decreasing, never zero

Table 1: Five possible gain models, where k ≥ 1 is the rank, and “Parameters” lists the
free parameters in the estimated model.

G1(g, k) = maxgain at the other, where maxgain is the upper limit to the gain range,
and is often (but not necessarily always) one.

Increasingly Flexible Models We are interested in gain models that lie between the
extremes of G0() and G1(), and consider five different interpolation functions in our
evaluation, embodying different assumptions as to how gain varies according to rank.
Table 1 lists the five options. The first model listed, Gs(), assumes that the gain is static
and both topic and rank invariant. For early ranks this is perhaps more realistic than
using G0 or G1, but is intuitively implausible for large ranks, since the goal of any
retrieval system is to bring the relevant documents to the top of the ranking.

The second model is a truncated constant model, Gc, which is predicated on the
assumption that all relevant documents appear in a random manner at the early ranks of
each run, and that beyond some cutoff rank m, no further relevance gain occurs. This
model is rank-sensitive in a binary sense, and because m is a parameter that is selected
in the context of a particular topic, it is also topic-sensitive. That is, the constant model
Gc adds a level of flexibility to the static Gs(), and while it may also be implausible
to assert that average gain is a two-valued phenomena determined by rank for any indi-
vidual topic, in aggregate over a set of topics, each with a fitted value of m, the desired
overall behavior might emerge.

The third step in this evolution is the model G`. The constant model Gc allows
an abrupt change in predicted gain as a function of rank, at the topic-dependent cutoff
value m. If we add further flexibility and suppose that average relevance gain decreases
linearly as ranks increase, rather than abruptly, we get G`. This model also has cutoff
rank m beyond which the expected gain from an unjudged document is presumed to be
zero, given by m = dc/λ0e. A fourth option is to allow a tapered decrease, and this is
what Gz achieves, via the Zipfian distribution, in which Hn,c is a normalizing constant



determined by the controlling parameter c and the ranking length n. The expected gain
rate decreases at deeper pooling depths but remains non-zero throughout, due to the
long-thin tailed property of the Zipfian distribution.

Another possibility is that the gain may initially increase or be constant, and then
decrease in the longer term. To achieve this option, the monotonicity expectation is
relaxed, a possibility captured by the discrete Weibull distribution, model Gw. Note
that this function allows the possibility of an initial increase, but does not make that
mandatory. In particular, when c = 1, the underlying distribution becomes a simple
decreasing geometric distribution. Since this model is derived from a discrete Weibull
distribution, the gain rate decreases faster than Gz when the distribution of relevance
by rank is similar.

Given a model G that has been determined in response to a empirical gain vector g,
we take r̂j = G(g, j) for unjudged documents when rj is unavailable, and then com-
pute a weighted-precision metric such as RBP in exactly the same manner as before.
That is, the estimated gain for that topic is used whenever the actual gain is unknown.

Measuring Model Fit With a choice of ways in which relevance might be modeled,
an obvious question is how to compare them and identify which ones provide the most
accurate matches to actual ranking data. To measure goodness-of-fit we use root-mean-
squared-error, or RMSE. That is, given a model G fitted to an empirical gain vector
g = 〈gj〉 by choosing values for the controlling parameters (Table 1), we compute

RMSE =

√√√√ 1

n

n∑
j=1

(G(g, j)− gj)2

as an indicator of how well that model and those parameters fit the underlying distri-
bution. Small values of this measure – ideally, close to zero – will indicate that the
corresponding model is a good estimator of the underlying observed behavior.

Measuring Model Predictive Power A second important attribute of any model is
its ability to be predictive over unseen data, that is, its ability to be used as a basis
for extrapolation. In particular, we wish to know if a model fitted to an empirical gain
vector computed using judgments to some depth d′ (training data) can then be used to
predict system scores in an evaluation to some greater depth d > d′. Figure 2 illustrates
this notion. Suppose that pooled relevance judgments to depth d′ = 10 are available.
If a weighted-precision metric such as RBP is used at an evaluation depth k = 10, all
required judgments are available, but even so, there is a still a non-zero score range, or
residual. That d′ = 10 score range is illustrated in Figure 2 by the solid lines, plotted
as a function of k, the evaluation depth. Note that as the evaluation depth k is increased
beyond 10 there is still some convergence in the metric, because documents beyond
depth d′ = 10 in this system’s run might have appeared in the top-10 for some other
system, and thus have judgments. The endpoints of those lines, at an evaluation depth
of k = 100, are marked LB and UB. The dotted lines in the figure show the bounds on
the score range that would arise if evaluation to k was supported by pooling to d = 100.
The final d = 100 LB-UB range – a subset of the wider d′ = 10 LB-UB range – is still



10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1
A
UB

LB

LB

UB

Final Range

B

C

εA

εC

Evaluation Depth k

R
B

P
d′ = 10 d = 100

Estimation

Fig. 2: An example of score bound convergence for a single system and a single topic.
The two pairs of lines indicate the RBP score range at different evaluation depths k,
based on two different pooling depths d′ = 10 and d = 100. The “Final Range” is the
metric score range at k = 100 using a d = 100 judgment pool; A, B, and C indicate
three possible outcomes of a predictive model starting with the d′ = 10 judgment pool.

non-empty, because the residual at depth k accounts for all documents beyond depth k,
even if full or partial judgments beyond that depth are available.

Now consider an evaluation to depth k = d, but based on a model G() derived
from a pooling process to depth d′. If the model has strong predictive power, then the
extended-evaluation using the predicted r̂j values should give rise to a metric score that
falls close to – or even within – the dotted-line LB-UB range that would have been
computed using the deeper d = 100 judgment pool. That is, a metric score based on
a predictive extrapolation will give rise to one of the three situations shown within the
dotted circle: it will either overshoot the d = 100 range by an amount εA; or it will
undershoot the d = 100 range by an amount εC ; or it will fall within that range, as
suggested by the point labeled B. In the latter case, we take εB = 0.

The overall process followed is that for each topic we use the set of system runs for
that topic, together with the depth-d′ pooled judgments, and compute the parameters for
an estimated gain function. We then use that gain function to extrapolate the depth-d
metric scores for that topic for each system, using r̂j values generated by the model
in place of rj values whenever the corresponding document does not appear within the
depth-d′ pool. So, for each combination of topic and system an ε difference is computed
relative to the score range generated by a pooled-to-d evaluation.

4 Experiments

Test Collections We employ two different test collections, the 2004 Robust task (Rob04,
topics 651–700) and the Terabyte06 task (TB06, topics 801–850), considering only the
runs that contributed to the judgment pool. The first dataset has a pooling depth of
d = 100 and a set of 42 contributing runs [13]; the second a pooling depth of d = 50,
and 39 contributing runs [4]. Figure 3 provides a breakdown of document relevance in
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d
Rob04 TB06

Gs Gc G` Gz Gw GH Gs Gc G` Gz Gw GH

10 0.237 0.106 0.080 0.086 0.071 0.070 0.190 0.040 0.020 0.018 0.011† 0.011
20 0.256 0.113 0.085 0.088 0.072† 0.071 0.186 0.049 0.020 0.022 0.011† 0.011
30 0.275 0.114 0.088 0.087 0.071† 0.070 0.186 0.056 0.022 0.024 0.011† 0.011
40 0.292 0.114 0.090 0.087 0.069† 0.069 0.187 0.060 0.024 0.023 0.012 0.011
50 0.307 0.112 0.090 0.087 0.068† 0.068 0.189 0.063 0.025 0.025 0.012† 0.011

Table 2: RMSE of models, evaluated to depth d, averaged across topics and systems,
using parameters computed using pooling data to depth d. Model GH() is a hybrid that
selects the best of the other models on a per-topic basis. Daggers indicate values not
significantly worse than the hybrid model at p = 0.05, using a two-tail paired t-test.

the two collections. Although the TB06 dataset uses shallower pooling, on average it
contains more relevant documents per topic than Rob04 (left pane); and the percentage
of relevant documents decreases more slowly as a function of pool depth (right pane).
For example, approximately 8% of the TB06 documents that first enter the pool as it is
extended from d = 40 to d = 50 are found to be relevant.

Goodness-Of-Fit Evaluation Regression was used to compute the two or three pa-
rameters for each model (Table 1), fitting them on a per-topic-basis, and using a range
of nominal pooling depths d. In the static model Gs() the predicted gain was set to 0.5
at all ranks; and in the constant model Gc() the cutoff parameter m was capped at the
pooling depth. All of the judgments to the specified test depth d were used, in order
to gauge the suitability of the various models. Note that the large volume of input data
used per topic and the small number of parameters being determined means that there
is only modest risk of over-fitting, even when d is small. Predictive experiments that
bypass even this low risk are described shortly.
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Fig. 4: Topic 683 for Rob04 (left column), and Topic 819 for TB06 (right column), with
models fitted using all available judgments (top row) and using a depth d′ = 10 pool
(bottom row). The black dots show the empirical gain, and are the same in both rows.

Table 2 lists average RMSE scores, categorized by dataset, by model, and by pooling
depth d. The two columns labeled GH() are discussed shortly. Two-tail paired t-tests
over topics were used to compare the RMSE values associated with the five models.
When all available judged documents are used, Gw has the smallest RMSE on both
datasets compared to the other four models, at a significance level p ≤ 0.05 in all cases,
and is a demonstrably better fit to the observed data than are the other four approaches.

We also explored a hybrid model, denoted GH(), which selects the smallest RMSE
over the available fitting data for the five primary approaches on a topic-by-topic ba-
sis. Two-tail paired t-tests were also conducted between model GH and each of the
others, and in Table 2 superscript daggers indicate the RMSE measurements that were
not found to be significantly inferior to the hybrid approach, again using p ≤ 0.05.
The Weibull model is a very close match to the hybrid approach, and of the per-topic
selections embedded in the hybrid, the Weibull was preferred around 85% of the time.

Looking in detail at Table 2, we also conclude that the Rob04 judgments are harder
to fit a curve to, with overall higher RMSE values for each corresponding depth and
model compared to the TB06 judgments. It is also apparent that little separates the
Zipfian Gz() and linear G`() approaches, and that either could be used as a second-



choice to the Weibull mechanism. Finally in connection with Table 2, the consistency
of values down each column as data points are added confirms the earlier claim that
there is only a modest risk of over-fitting affecting the results of this experiment.

Figure 4 illustrates the five fitted curves for two topics, and their approximation
of the empirical gain, which is shown in the graphs as a sequence of black dots. One
topic from each of the two datasets is plotted, with two different pooling depths – one
graph in each vertical pair using all of the available judgments (d = 100 for Rob04,
and d = 50 for TB06, in the top row), and one graph showing the models that were
fitted when pooling was reduced to a nominal d′ = 10 (bottom row). One observation
is immediately apparent, and that is that empirical gain does indeed decrease with rank;
moreover, in the case of TB06 Topic 819, it does so surprisingly smoothly. Also worth
noting is that the empirical gain for the Rob04 topic decreases more quickly than it does
for the TB06 topic as the evaluation depth k increases, which both fits with the overall
data plotted in the right pane of Figure 3, and helps explain the better TB06 scores for
the static model in Table 2. Comparing the top two graphs with the lower two, it is
clear that the more volatile nature of the empirical gain in the Rob04 topic has meant
that when only d′ = 10 judgments are available, the models all diverge markedly from
the actual gk values when they are extrapolated beyond the fitted range. The smoother
nature of the TB06 empirical gain function means that the extrapolated models based
on d′ = 10 continue to provide reasonable projections.

Predictive Strength Evaluation The most important test of the various models is
whether they can be used to generate reliable estimates of metric scores when extrapo-
lated beyond the pooling depth, the process that was illustrated in Figure 2. Table 3 lists
the results of such an experiment, using RBP0.95 throughout, a relatively deep metric
(at an evaluation depth of 50, the inherent RBP0.95 tail-residual is 0.07, and at an eval-
uation depth of 100, it is 0.006), and with Gs() omitted for brevity. To generate each
of the table’s entries, a pool to depth d′ is constructed, and the corresponding model
fitted to the empirical gain values associated with that pool. Each run is then evaluated
to depth k = 100 (Rob04) or k = 50 (TB06) using pooled-to-d′ judgments, if they
are available, or using estimated gain values r̂j generated by the model for that topic.
The RBP score estimate that results is then compared to the score and residual range
generated using the full pool, d = 100 for Rob04 and d = 50 for TB06. If the ex-
trapolated RBP score falls within that pooled-to-d range, an ε of zero is registered for
that system-topic combination; if it falls outside the range, a non-zero ε is registered,
as described in Section 3. Each value in the table is then the average over systems of
the root-mean-square of that system’s topic ε’s ; with the parenthesized number beside
it recording the percentage of the ε values that are zero, corresponding to predictions
that fell within the final RBP score range. We also measured the “interpolative” method
of estimating a final RBP score that was described Ravana and Moffat [10], denoted as
“RM” in the table. It predicts RBP scores assuming that the residual can be assigned a
gain at the same weighted rate as is indicated by the judged documents for that run.

All of the models are sensitive to the pooling depth d′, and it is only when sufficient
initial observations are available that it is appropriate to extrapolate. Also interesting in
Table 3 is that the linear model, G`(), provides score predictions that are as reliable as
those of the Weibull model. As a broad guidance, based on Table 3, we would suggest



d′ Gc G` Gz Gw GH RM

Robust04
20 0.020 (33) 0.015 (33) 0.027 (15) 0.018 (31) 0.018 (31) 0.040 (9)
40 0.004 (60) 0.003 (65) 0.005 (56) 0.004 (65) 0.004 (65) 0.010 (31)
60 0.001 (78) 0.001 (84) 0.001 (89) 0.001 (88) 0.001 (88) 0.002 (71)
80 0.000 (92) 0.000 (95) 0.000 (99) 0.000 (97) 0.000 (97) 0.000 (98)

Terabyte06
10 0.089 (24) 0.061 (45) 0.082 (39) 0.065 (45) 0.067 (45) 0.065 (42)
20 0.033 (40) 0.022 (71) 0.031 (68) 0.023 (73) 0.024 (73) 0.023 (68)
30 0.013 (58) 0.006 (88) 0.008 (87) 0.005 (90) 0.006 (90) 0.008 (87)
40 0.004 (78) 0.001 (98) 0.001 (98) 0.000 (99) 0.000 (99) 0.001 (97)

Table 3: Root-mean-square of ε prediction errors using different pooling depths d′, com-
pared to an evaluation and pooling depth of k = d = 100 (Rob04) and k = d = 50
(TB06). The method labeled RM is the “interpolation” method of Ravana and Mof-
fat [10]. Bold values are the best in that row, and the numbers in parentheses are the
percentage of the system-topic combinations for which ε = 0 (point B in Figure 2).

that if an evaluation is to be carried out to depth k, then pooled judgments to depth
d′ ≥ k/2 are desirable, and that application of either the Weibull model Gw() or the
simpler linear model G` to infer any missing gain values between d′ and k will lead to
reliable final score outcomes. Both outperformed the previous RM approach [10].

That then leaves the choice of k, the evaluation depth to be used; as noted by Mof-
fat and Zobel [9], k is in part determined by the properties of the user model that is
embedded in the metric. In the RBP model used in Table 3, the persistence parameter
p = 0.95 indicates a deep evaluation. When p is smaller and the user is considered to
be less patient, the fact that the tail residual is given by pk means that smaller values of
k can be adopted to yield that same level of tail residual. Note that it is not possible to
analyze AP in the same way, hence our reliance on RBP in these experiments.

5 Conclusions and Future Work

We have investigated a range of options for modeling the relationships between rele-
vance and retrieval rank, calculating the probability of a document being relevant con-
ditioned on a set of systems and the evaluation depths. Our experiments show that it is
possible to use the models to estimate final scores in weighted-precision metrics with a
reasonable degree of accuracy, and hence that pooling costs might be usefully reduced
for this type of metric. To date the predictive score models have not been conditioned
on the document itself, and the fact that it might be unjudged in multiple runs at dif-
ferent depths. We plan to extend this work to incorporate the latter, hoping to develop
more refined estimation techniques. We also plan to explore the implications of strati-
fied pooling, whereby only a subset of documents within the pool depth are judged.
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[4] Büttcher, S., Clarke, C.L.A., Soboroff, I.: The TREC 2006 Terabyte Track. In: Proc. TREC.
pp. 39 – 53 (2006)
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