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ABSTRACT
Information retrieval research and commercial search system eval-
uation both rely heavily on the use of batch evaluation and numer-
ical system comparisons using effectiveness metrics. Batch eval-
uation provides a relatively low-cost alternative to user studies,
and permits repeatable and incrementally varying experimentation
in research situations in which access to high-volume query/click
streams is not possible. As a result, the IR community has in-
vested considerable effort into formulating, justifying, comparing,
and contrasting a large number of alternative metrics. In this paper
we consider a very simple question: to what extent can the various
metrics be said to give rise to stable scores; that is, evaluations in
which the process of adding further relevance information creates
refined score estimates rather than different score estimates. Under-
lying this question is a fundamental concern, namely, whether the
numeric behavior of metrics provides confidence that comparative
system evaluations based on the metrics are robust and defensible.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation
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Experimentation, Measurement

1. INTRODUCTION
Information retrieval system performance is often reported in nu-

meric terms, as evaluated relative to an effectiveness metric [11].
The goal is to construct a mapping between an ordered set of binary
or graded relevance scores and the real numbers, so that system
scores can be amalgamated over sets of topics, and compared us-
ing statistical techniques. Many such mappings have been devised,
each with the intention of capturing some new nuance of what it
means for a ranking to be “good”. Section 2 briefly summarizes
some of these metrics.

Much of the exploration of metrics has focused on their discrimi-
nation ability – the extent to which they give rise to system compar-
isons that reach some specified level of statistical confidence. Other
issues that have been explored relate to the imprecision caused by
the prevalence of incomplete judgments, and the extent to which
any particular metric is vulnerable to uncertainty.

Our purpose in this brief paper is to examine the extent to which
scores for metrics are stable, that is, are not volatile in the face of
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increased information. We do not (yet) have a formal definition for
this concept, but one way of describing it is as the extent to which
adding further judgments to a system comparison might disrupt the
relativity of the initial system ordering because the metrics’ scores
for the individual runs are volatile. There have been previous at-
tempts to quantify stability [3]. For example, if some system is
measurably better than a group of other systems when evaluated
using a set of topics and judgments, and then an extended set of
judgments becomes available, how likely is it that the same sys-
tem will still be deemed to be the best one? To help motivate this
concept, consider the metric reciprocal rank (RR). As judgment
resources are invested, a comparison based on RR will necessarily
lead to a stable and consistent ordering of systems, since the first
time a RR score for a run becomes non-zero is the last time that
score changes, regardless of how many further judgments are un-
dertaken. So, RR has a low level of score volatility, and system or-
derings based on RR should be stable and consistent as judgments
are added to the evaluation.

In this preliminary exploration we show the differing levels of
observed score volatility associated with four different TREC eval-
uations, using a suite of different metrics, and judgment pools of
different depths. We find markedly different behavior between the
TREC Newswire collections and the TREC ClueWeb collection,
even when they are pooled to the same retrieval depth; and also
find marked differences between utility-based effectiveness met-
rics such as rank-biased precision, and recall-based metrics such as
average precision and normalized discounted cumulative gain.

2. BACKGROUND

Effectiveness Metrics The performance of information retrieval
systems is often reported in numeric terms using one or more ef-
fectiveness metrics [11]. As a result, there has been considerable
discussion of effectiveness metrics, since the choice of metric and
any parameters that must be specified before it can be evaluated,
can be thought of as also being a choice of user model. For ex-
ample, rank-biased precision (RBP) [6] connects one set of rules
describing presumed searcher behavior with a corresponding effec-
tiveness metric; the expected reciprocal rank (ERR) metric [2] a
different set of rules, and so on. Such metrics measure user percep-
tions of rankings based on the rate at which utility is gained, and
assign scores based only on knowledge of the prefix of the ranking
that the user inspected, relative to their presumed behavior [7].

Another family of metrics is based around the idea of measuring
the ranking relative to the best that any system could have done.
Recall-based metrics such as average precision (AP), normalized
discounted cumulative gain (NDCG) [4], and the Q-Measure (QM)
[10] assign scores to runs as a weighted fraction derived from both



Collection Queries d Runs

Robust04 651–700 100 42
TREC9 451–500 100 25
CW09 1–50 12+ 32
CW10 51–100 20 21

Table 1: Details of test collections used in the evaluation process.
Only runs that contributed to the pool to a depth of d (or more) are
included in the experimentation.

knowledge of what the user saw, and also what they did not. In
these metrics, for example, if only a small number of relevant doc-
uments exist for a topic, and the user was shown those documents
early in the ranking, then the metric score will be high, because the
system that generated the run performed relatively well, even if in
absolute terms there were only a few relevant documents provided.

Other ways of categorizing metrics have also been noted [5].

Pooling and evaluation depths We assume the relevance judg-
ments are derived by pooling a set of contributing runs to a depth
d, so that every document that appears at depth d or shallower in
one or more of the runs is assigned a relevance score. Voorhees and
Harman [12] describe this process.

Separate to the pooling depth, we are also interested in the eval-
uation depth, denoted by k, the depth to which each ranking is
scored. Note that k will often be equal to d, but that there may also
be circumstances under which k < d or k > d are used, with some
of the judgments simply ignored in the first case, and an extended
evaluation carried out in the second case. For example, a set of runs
might be pooled to depth d = 100, and then evaluated using all of
AP with k = 100 or k = 1,000; NDCG at a depth of k = 20; and
Precision at a depth of k = 5.

In terms of notation used in this paper, where a single subscript is
provided to a metric, for example, APk, it represents an evaluation
depth, with an assumption that the pooling depth d ≥ k and hence
that all required judgments are provided. Two subscripts are sup-
plied when k > d and extended evaluation is being carried out. For
example, AP1000,100 indicates that judgments to depth d = 100 are
being used in an evaluation to depth k = 1,000. Extended evalua-
tion raises the question of how to handle unjudged documents. Two
different approaches are commonly used: either unjudged docu-
ments are deemed to be non-relevant; or unjudged documents are
removed from the evaluation completely, and all deeper documents
are assumed to move up the ranking by one position, to fill in the
gap and form a condensed run [1]. Both of these approaches are
used in the experiment described in the next section.

3. EXPERIMENTS

Experiment Setup We evaluate both Newswire and ClueWeb test
collections. Details of these, and of the number of runs that con-
tributed to the judgment pools, are listed in Table 1. Note that other
runs were submitted in each of these rounds of experimentation,
but did not take part in the pool construction, and hence are not
necessarily fully judged to depth d. Only the contributing runs are
included in our experimentation. The ClueWeb 2009 Ad-Hoc task
adopted a sampling strategy to select documents to be judged; in
this case we set d as the greatest available depth to which all runs
for a topic had all of their documents judged.

Then, for each collection, for each of the contributing runs, and
for a range of evaluation depths k up to and beyond the pool-

ing depth, we evaluated five different effectiveness metrics. When
k ≤ d, all of the documents retrieved by any system have been
judged; when k > d only the first d documents in each run are cer-
tain to have been judged, but if other deeper documents have been
judged (because, for example, they appear at a shallower depth in
a different run) then those judgments are also used. Finally, we
graphed metric scores as a function of evaluation depth k for the
four collections and the five metrics, taking two forms of each met-
ric: the usual one, in which unjudged documents are assumed to
be non-relevant; and an alternative condensed version, in which
unjudged documents are removed from the run, and all of the doc-
uments below them move up by one (more) position.

Average precision (AP) was evaluated using binarized relevance
judgments; the other four metrics all make use of graded relevance.
For RBP, we set the persistence parameter p to be 0.8, representing
a relatively impatient user; and we set β = 1 for metric QM. The
condensed results use the same metrics, but only the judged docu-
ments, assuming that all documents beyond the last judged one in
each run are also irrelevant.

Experimental Results Figures 1, 2, 3 and 4 show the evolution of
system scores for all of the contributing systems in the four rounds
of TREC experimentation that are listed in Table 1. The left col-
umn of graphs in each figure shows the metric applied in the usual
way, with unjudged documents taken to be non-relevant. The corre-
sponding graphs in the right column show the corresponding con-
densed evaluations. The red dashed line in each plot denotes the
pooling depth. Scores to the left of each red line represent fully-
judged evaluations at the indicated values of the evaluation depth k.
Scores to the right of the red lines are extended evaluations in which
not all documents used in the evaluation have been judged.

Each graph shows one line plotted for each contributing system.
Five systems are picked out with darker lines in each graph, based
on the eventual system ordering arrived at when k = 1,000: the
best system, the worst system, and the three systems defining the
quartiles of the eventual distribution of systems. Those five systems
are traced over the full range of k. Starting at the left and working
to the right, crossings of the lines in a graph indicate changes of sys-
tem ordering arising as more judgments are provided. Conversely,
the more stable (and non-intersecting) the lines are, the more stable
the system ordering induced by the metric. Note that score volatil-
ity need not correspond to system ordering volatility; and that we
are interested in both.

NewsWire data Figures 1 and 2 show NewsWire data, with pool-
ing depth of d = 100 in both bases. System orderings are moder-
ately stable for the recall-based metrics in the first six panes, and
very stable for the two utility-based metrics depicted in the lower
four panes. In these two collections there is a clear sense that the
majority of relevant documents have been identified by the deep
pooling process. Even so, shallow evaluation depths of k ≤ 10
generate confused signals, and should probably be avoided. Note
the clear difference between the two types of metric – with the
recall-based evaluations that are “relative to opportunity”, scores
can both rise and fall. The utility-based metrics give scores that
can only rise.

ClueWeb data The two ClueWeb evaluations (Figures 3 and 4) use
shallower judgments against a much larger collection, and it seems
likely that only a minority of the relevant documents have been
identified. Shallow evaluations using recall-based metrics with k <
10 are notably unstable, with many crossovers; the situation is only
a little better at larger evaluation depths. The many intersections in
the top six panes in these two figures, both left and right of the red
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Figure 1: TREC8 Robust04 with all available judgments, using APk,100, NDCGk,100, QM(1)k,100, RBP(0.8)k,100, and ERRk,100. The right
column shows corresponding condensed results. The dashed line denotes the pooling depth.
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Figure 2: TREC9 systems, using APk,100, NDCGk,100, QM(1)k,100, RBP(0.8)k,100, and ERRk,100.
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Figure 3: ClueWeb09 Ad-Hoc systems, using APk,10+, NDCGk,10+, QM(1)k,10+, RBP(0.8)k,10+, and ERRk,10+.
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Figure 4: ClueWeb10 Ad-Hoc systems, using APk,20, NDCGk,20, QM(1)k,20, RBP(0.8)k,20, and ERRk,20.



dashed line, mean that the evaluation depth k can play a crucial role
– albeit an unpredictable and inadvertent one – in an experimental
outcome.

Recall-based versus utility-based All four figures, spanning four
document collections and two types of data, show the convergent
behavior of the two utility-based metrics. They benefit from their
relatively high top-weightedness, and so are less affected by the
shallow pool depth associated with the two ClueWeb collections.
Scores for these two metrics (with the chosen parameters) are largely
stable by the time the pooling depth has been reached. It is also
helpful that they are monotonic; and the result is that there is a
much better sense of the final at “at k = 100” or even “at k =
1,000” scores being highly correlated with the “at k = 10 scores.
Given that the “at k = 10” scores are inside the pooling depth, and
hence not subject to the vagaries of unjudged documents, this is an
important attribute for a metric to have.

Condensed runs The use of condensed runs as a way of deal-
ing with unjudged documents does not alter any of these conclu-
sions. The recall-based metrics still don’t achieve stable scores
until evaluation depths in the hundreds are reached, and for the
two ClueWeb collections (Figures 3 and 4) the induced system or-
derings are markedly different from those that arise at shallower
evaluation depths.

Other AP formulations Figures 1, 2, 3 and 4 use a “relative to
opportunity” AP variant in which the normalizing denominator is
taken as the minimum of R, the known number of relevant docu-
ments, and k, the evaluation depth:

APk =
1

min{k,R}

k∑
i=1

ri · P(i) , (1)

where ri is the relevance of the document at depth i, and P(i) is the
precision at depth i. In this formulation, a perfect ranker attains a
score of 1.0 regardless of the relationship betweenR and k, mirror-
ing the outcomes that NDCG obtains. The drawback of this form
of AP is that – as is also the case with NDCG – the system scores
can decrease as well as increase with k, as shown in the graphs.

In the more commonly used alternative formulation the score is
monotonic with increasing evaluation depth, provided that the pool-
ing depth is held constant:

APk
′ =

1

R

k∑
i=1

ri · P(i) . (2)

In this “standard” formulation for AP, scores of 1.0 cannot be achieved
when k < R, even if the ranking to depth k contains nothing but
relevant documents, and this inhibits the “sense” of the metric in
terms of the underlying “relative to opportunity” rationale.

A third variant AP computation arises if the assumption that R
is constant is challenged. For any non-trivial collection the true
R cannot be determined, and all that can be established is a lower
bound for it. When k and d are both large and the collection not
large, a reasonable approximation might be arrived at [13]. But
when d and k are small, or the collection is large, the situation is
different. A third version of AP can be defined for these situations,
with Rd is used to denote the value of R that emerges after pool-
ing is carried out to depth d, so that R0 = 0, Rd+1 ≥ Rd, and
limd→∞Rd = R:

APk
′′ =

1

Rk

k∑
i=1

ri · P(i) . (3)

Figure 5 shows the behavior of these two variants when applied to
the contributed runs across the four collections. In the left column
of graphs, the curves do not decrease at all, but the same density of
cross-overs arises; moreover, the metrics’ score are compacted in
to a tighter range. Nor does the normalization regime in the right
column of Figure 5 address the issues already noted in connection
with AP and the other recall-based metrics. It appears that normal-
ization itself is the issue that is creating the inconsistent outcomes,
not the details of how the normalization is being carried out.

4. CONCLUSION
We report here only on preliminary measurements. But even

based on these early outcomes, it seems that there are marked dif-
ferences between the NewsWire and ClueWeb data sets that are
more than merely a function of different pooling and judgment
depths; and marked differences between the utility-based metrics
such as RBP and ERR, and the recall-based ones such as NDCG
and AP. The latter appear to be rather more volatile than are the
utility-based methods, a difference that is not rectified by the use of
condensed runs. We have now commenced a range of more detailed
evaluations. These include quantifying the extent to which system
orderings shift in response to the addition of judgments when mea-
sured using Kendall’s τ and other correlation measures; and also
quantifying discrimination ratios [9] for various combinations of d
and k, including measuring the extent to which initial “findings” of
statistically significant superiority get overturned as more evidence
is supplied [8].
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Figure 5: Scores from APk
′ (left column) and APk

′′ (right column) for the four TREC collections listed in Table 1. The curves in each pair
of graphs are identical to the right of the red line. The pooling depth for ClueWeb09 is set to d = 12 for all topics.


