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Abstract —Social networks are a vital mechanism to disseminate information to friends and colleagues. In this work, we investigate an
important problem - the personalized influential topic search, or PIT-Search in a social network: Given a keyword query g issued by a
user u in a social network, a PIT-Search is to find the top-k g-related topics that are most influential for the query user . The influence
of a topic to a query user depends on the social connection between the query user and the social users containing the topic in the
social network. To measure the topics’ influence at the similar granularity scale, we need to extract the social summarization of the
social network regarding topics. To make effective topic-aware social summarization, we propose two random-walk based approaches:
random clustering and an L-length random walk. Based on the proposed approaches, we can find a small set of representative users
with assigned influential scores to simulate the influence of the large number of topic users in the social network with regards to the
topic. The selected representative users are denoted as the social summarization of topic-aware influence spread over the social
network. And then, we verify the usefulness of the social summarization by applying it to the problem of personalized influential topic
search. Finally, we evaluate the performance of our algorithms using real-world datasets, and show the approach is efficient and
effective in practice.
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1 INTRODUCTION An alternative approach is to recommend the latest qudayec

. ) . topics for a query [18], but this may not be suitable in preadti
The importance of social networks such as Twitter, Facelawuk ;) jications since it does not consider older topics onisions.

WeChat in providing a convenient platform for users to share To address this problem, we would like to select a set of rep-
information contiqugs to.grlow. The dynamic nature of infation resentative users that adequately summarize a given tohiere
gnd user connectivity within these net.works have presemiztly the representative users are evaluated based on theineks®
!nterestmg opgn.res.earch problems in recent years, su¢heas.the users (topic users) whose posted messages containpibe to
influence maximization problem [8, 11, 12, 14], and the topig, .o | this case, if the query user is likely to be reached o
detection prob_lem [28, 32]. However, a user issuing a keWwo,qenced by the selected representative users, then tlgy qu
query can e_asny be overwhelmed_by the number of que_ryatr_ﬁlatuser has a high probability of following or trusting the topi
IOp'CS'_ Thisis becagse a large social netvyork may contdlmr_m recommended by the selected representative users. Inaper,p
of social users sharing comments_ on various events or ECIFIITdS we refer to this problem aBersonalized Influential Topic Seatch
these comment_s lead to new topics. In this conte_xt, 'dengfﬁ or more succinctly PIT-Search. Our goal is not to find how actop
small set of topics tha_‘t are relevant to the query s a chailfen influences a group of users, rather it is to find how important
problem. The most widely-accepted method is to select tee re, ;.5 ang influential users might be better leveraged tot mee
vant tqplcs based on the term releyance between topics &nd ecific user’s information need. In other words, if usess iar
query in a manner similar to a typical keyword search [30. 3 imilar social contexts in the social network, they woulé tlee
same results when they issue the same keyword query. PItiSea
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Example 1 (PIT-Search)Consider the small social network de-
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picted in Figure 1, where a node represents a user, and tiee edgd build topic-to-representative user index, we develaprtovel
weights represent thafluenceusers have over neighbors. Thaandom-walk based approaches that can represent all todi&sn
direction of an edge shows the influential relationship leetov using only a subset of topic-sensitive representative sididesed
two nodes. Here, assume users have expressed positive opimthe influence propagation of a topic in the social netwOmce
ions about topics being discussed related to mobile phoneg identify the relations among topic nodes and represeetat
such asApple Phondor t;, Samsung Phontor t, andHTC nodes, the corresponding topic-to-representative ugexinan be
Phonefor t3. A user may mention several different phones likéhen built to capture the topic-sensitive local influencesofall
User13. Now suppose that Us8rwants to know which phone communities in social networks. We then construct a pefismth
is the best choice for her by checking her social network vi@@ropagation index that maintains a subset of nearby nodés an
a queryg = {Phong. In this case, all three phones, t; and the associated propagation probabilities for every node¢hen
t3 areg-related topics, and there are three neighborhood useraph. The personalized propagation index is independerith
(Userl - t5, 5 - t1, 6 - t3) who can influence Use}, making topics and queries. With the support of both indexes, we can
the choice a difficult one. efficiently assess the influence for amgyrelated topic on-the-
fly. To efficiently find the topk most influentialg-topics for a
user, we also present a dynamic tof?IT-Search algorithm that
identifies the quality;-related topics in the top-result set based
on intermediate results. Low-quality topics are prunednfrihe
result set by probing as few nodes as possible. Using the thre
techniques, we can greatly accelerate the performance of PI
Search in large social networks.

In summary, the contributions of this paper are as follows.

o« We develop two novel random-walk based approaches

Fig. 2. Demonstration of Computing Influence of ¢; for User 3 to select topic-sensitive representative nodes in a social
network. This captures the local influence for a topic in
We address thi challenge as follows. Given tapi Figure 2, different parts of the social network.

the influence transition paths and corresponding tramsitio « We design a togs PIT-Search algorithm to efficiently
probabilities are shown below. Since there are five users compute thek most influentialg-related topics for a user

containingty, each node is assumed to have an equal local based on our proposed pre-computed index.
weight —%. The final influence score for a topic to a specific « We evaluate the efficiency and effectiveness of our pro-
node can be calculated by multiplying the local weight arel th posed techniques using a large Twitter dataset, and show
transition probabilities. the benefits of our methods by comparing with three
baselines adapted from previous work on social networks.
Path Transition Probability . . . . .
o153 0060 The remainder of this paper is organized as follows. Se&ion
53 0.600 presents the formalization of the PIT-Search problem. ktiSe 3
5—=-7—=13—-12—=10—6—=3 0.000 . .
13512510563 0.024 and Section 4, we present two novel approaches for choosing
Ism 10 6 ool topic-sensitive representative nodes from social netsiole
Aggregationx L Final Score= 0.137 present the procedures for building a personalized prdjmaga

index and describe an efficient tépPIT-Search algorithm in
Similarly, the influence of topics; andts can be computed Section 5. The experimental results are presented andssisdu
for User3 —0.188 and0.065. Using the intermediate results,in Section 6. Finally, we review related work in Section 7 and
a PIT-Search would returt, (Samsung Phone) as the tbp- conclude this paper in Section 8.

result for User3 becauses is the most influential topic in

the social context of Use3. If User 7 issues the same query2 PROBLEM DEFINITION

¢, thent; (HTC Phone) will be the topi-result. Similarly,t>  consider a social network gragh = (V, E, T, A) whereV is the
(Samsung Phone) is returnedyifs issued by Uset 4. node set representing the social users in the social nehaark
As shown in Example 1, PIT-Search can return differedt is the edge set depicting links between usérss a topic space
topic results for different users even if they are issuinggsame Where each social user may have a set of topics extractecdtfrem
query. There are three issues to be addressed when perfprntifer’s posted messages, eB(v) = {t1,..., } for a nodev. A
an efficient and effective PIT-Search. First, a social netwnay Mmaintains the transition probability of edgesfin
have a large number af-related topics. Secondly, for eagh Definition 1. [Social Summarization] Consider a social network
related topic, a PIT-Search must compute the influence from a G = (V,E,T,A). Given a topict € T, a t-aware social
larger number of topic-related users for the given user aratyq summarization of7 is the selection of a specified number of
Thirdly, any given search can be mistakenly dominated byna fe  nodesV* from V' that represent the influence of the topic
influental neighbors. To reduce this bias, we need to dedpit nodesV; which satisfy the following condition:
driven social summarizations for a social network.

. *
To address the above challenging issues, we investigate the e v*gv,WIﬁlglipecmed Zv 2t 0) =0 @)
problem of PIT-Search by developing the following threehtec 1 oc ,
niques: topic-sensitive representative node selectiompac-to- whereZ(t,v) = Al 2 uev, Zpiepg Pr(p') andZ*(t,v) =
representative user index, and a personalized propagatitex. >uev- weight(u,t) 32 i po Pr(p'). Py includes all possi-

In order to perform topic-sensitive representative nodecsien, ble paths fromu to v. p* represents theth path, andPr(p?) is



the propagation probability of paji by multiplying its edges’
transition probabilities maintained iA. For each selected
representative node and a topict, weight(u,t) aggregates
the influence of a set of topic nodes clustered by the central
nodeu. The weight can be then taken as the initial propagation
power of the representative node when evaluating the inflien
to the query user for the topic.

Definition 2. [PIT-Search Problem] Given a keyword query;
issued by a usev, a social network, and the numbek
of items to return, a PIT-search returns thenost influential
q-related topics ta by satisfying:

arg max {3 T°(t, )|t € T") 2)

whereZ* is the aggregate influence of topicsHif to v, T
is ak-size of topic subset selectingrelated topics fron¥'.

The problem of computing social summarization can be re-

duced to the optimal subset selection with constraints,clwvhi
is an NP-complete problem [1]. Therefore, computing social
summarization is also an NP-complete problem. In this paper
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into different groups with regard to the sampling node set
|48

GP*(u,v) = |{””|$_)>L“a"§’/'€—>>%"”ev H represents the
probability of not knowing if nodesu and v can be
grouped. This is equivalent to-GP™ (u, v) —GP™ (u, v).

To group topic nodes, the following clustering rules are ap-
plied:

Rule 1: Two nodes: andv are grouped iiGP™ (u,v) >
GP™ (u,v) andGP" (u,v) > GP*(u, v) hold.

Rule 2: Two nodes andv are not grouped iGP~ (u, v)

> GP*(u,v) andGP™ (u,v) > GP*(u,v) hold.

Rule 3: Two nodesu and v are grouped based on a
probability if GP* (u, v) > GP™ (u,v) > GP~ (u,v) hold.

The probability is calculated a&m((jlj;%g(u m that
: Gp+(u,1;) 7 ’
is also equal tom

Rule 4: A node can only appear in one group (clustering
is hard).

Rulesl, 2 and4 are clear. Rulg has an implicit property.

first address the challenging problem of selecting reptetiea Property 1.Grouping Probability: Given two nodes and v, if

nodesV * in Section 3 and Section 4 in two different ways. Then,
we develop an online PIT-Search algorithm by using these pre
selected representative nodes in Section 5.

3 APPROXIMATE RANDOM CLUSTERING (RCL-A)

GP*(u,v) > GP™ (u,v), then GP' (u,v)

larger than or equal te

must be

Gp+(u,v)+GP*(u,v)
GP (u,v)
GP- (u,0)+GP* (uw)”

Property 1 guarantees that the nodes can be approximately
grouped when they are in neither a “clearly in” state, norladdy

In order to select a set of representative nodes for the tupes, Out” state.

one approximate solution is to cluster the topic nodes, aed t

Algorithm 1 RANDOM_CLUSTER(G, ¢, L)

identify a central node for each group. Lastly the local iefloe
for all unselected topic nodes is migrated to the centrabndtie
central nodes are then taken as the representative nod€hset.
aggregated local influence score for each representative can
be used to evaluate the influence for topics to each social use

input: A graphG = (V, E), a topict, a max hop length’, and the
numberC_Size of clusters
output: A set of topic node group§

1: Get topic node set; for ¢ from inverted node index

2: Random node selection-based sampling subset V'
3: Initialize an arrayGPLabe||V;|][|Vi]] + @
4

3.1 Clustering Topic Nodes . Initialize a temporary arrayemp V; + Vi
: for eachu € V; do

The main idea of clustering topic nodes is to first measure thg. TempV; « {TempV; — u}
common reachability of topics nodes for a given sample netle s 7:  for eachv € Temp V; do

al

and then group the topic nodes into different clusters basetie  8:

common reachability. Here, the reachability of a node igp$jrthe

number of sample nodes that can be reached by the node. Givén
two nodes, the common reachability is evaluated as the nuaibe 10:
sample nodes reached by the two nodes together. The funtEmer:
assumption is that if two nodes can be grouped into one cjustg,.
then there is a high likelihood that these two nodes can reachas:
certain number of common neighbors. In other words, the moig:
common neighbors nodes can reach, the higher the prolyatiilit 15:
grouping the two nodes together. 16:

To decide if two nodes can be grouped together or not, tAé:
RCL-A solution is based on the following notion. First, select &8
sampling node sét”’ from V. Three variants are used to measur(égf

the grouping relation of the two nodasandv:

21:
22: SETree«— SET_ENUMERATION_TREE(GPLabelu][v])

Vu,r < All nodes that can reach in L hops //Use indexed
I1[u] in Algorithm 6
Vs, < All node that can reach in L hops
Gt |V1L,Lr;“;1;“Lmvl‘
_ Vo LNV =V, Vo r NV =V,
G — [V, L L cl 4 Vor o Ll
if Gt > G~ andG" > 1=¢— then
GPLabe[u][v] + 1
if G~ > G andG™ > =&~ then
GPLabelu][v] + 0
if GT > G andGT <1 -G — G~ then
Pr 1—GG*
if rand() < Pr then
GPLabefu][v] + 1
else

GPLabelu][v] < 0

L L ’
« GP'(u,v) = Hzlz= e H wherez —L
andz —% v mean noder can reach nodes andv in L

hops.GP™ (u, v) represents the probability of grouping

andv with regard to the samgling node Jét.
. GP (u ’U) - \{a:|:r~>>Lu if e—Lvorz—>Tuif wﬁLu,a:GV'H
O V7]
wherez —>% u meansr cannot reach: within L hops.
GP™ (u,v) represents the probability of splittingandv

23: S <~ NO_OVERLAP_GROUPING(SETreeC_Size)
24: return S

Algorithm 1 shows the procedure of grouping topic nodes
based on a random sampling node set. First, the topic nodes
V, are retrieved from an inverted node index, and then a set of
nodesV’ are sampled from the original node 3ét In this work,



each node is sampled with a probability proportional to thgrde Algorithm 3 No_OVERLAP_GROUPING()

of the node, which will be further discussed in Section 6. tNex 1: Compute the approximate group size|tg/C_Size
two arrays,GPLabe||V;|][|V;]] for labeling if two nodes grouped 2: repeat

together, andTemp V; for maintaining the list of unprocessed 3 SetFound«- false

nodes, are initialized. In order to efficiently compute theuping & Wh;'i”?.gf?mi?é’h”c()

probability, the node set for which every node can reach aryen . if |s| > [|Vi|/C_Size] then
node inL hops is pre-computed and indexed. The procedure of inz. r.removeNodes)

dex construction is shown in Algorithm 6. Line 16-Line 21 ben  s: else

node pairs that are not clearly in/out of a group. Here, theéeno ©: SetFound < true

pairs are labeled by comparing the calculated groupingaitity — 10: Add s as the first group ir§
Pr with a random generated value betwéeand1. As Pr — 1, E forﬁ:ﬁ?&gﬁégé&i?o
the likelihood of a random groupi_ng increases. Lastly, hi@d 5. il %.hasChiIdrer@)::false
node groups are generated by callirgrSENUMERATION_TREE,  14: return The set of groups'

and finalized by calling B_OVERLAP_GROUPING.

Algorithm 2 SET_ENUMERATION_TREE() nodes inV. Therefore, the importance of a central node candidate

1: Create a tree with root « & can be measured by how close it is to all the topic noddg,in
g; for ef?;ég Vi do Given a nodev; € V and a topic node group, the average
5: for eachv, in the treer do 1 )
6: if v, # truethen Davg(vi) = v > distancév;, v;) 3)
7: Leftsib|in%<— vg.getSibling$) 9l wev,
8: for each siblingv, € Leftsibling do . SN - . 4
o if CHECK_GROUPING(v.., 1) Using the records in GPLa- Wheredzstgnce(vl,vj) is the minimal hops walking fromy; to
bel then v; on the directed graptv.
10: new-<— v, U vy Definition 3. Closeness Centrality of Node: The closeness
11: v,..addChild new) centrality ofv; € V for a topic node groupy; is defined:
12: vy + true _
13: return Set enumeration tree Zvjevg distancéuv;, v;) .
g
In the Function 8T_ENUMERATION_TREE shown in Algo- (A (4)

rithm 2, a set enumeration tree data structure is used totanain DS distancév;, v)
the possible groupings. The tree is commonly used to represe Vi€V v
and/or enumerate sets in a best-first fashion [27]. The BE&e Although the closeness centrality of a node is equivalent to
be used as an index to efficiently identify the grouping iefe the all pair shortest path problem, it is not practical tocess
of nodes. The root node of the tree is initially an empty settE |arge graphs as an exact solution for the problem c®%t$’|?).
topic node is set as a child node of the root node. Then, a chadifferent from the work in [22], our goal is to select a nodess
is made to see if a tree node (denoted as current node set) &né given group of topic nodes and the maximal distance of any
one of the right-side sibling nodes (denoted as probed netle swo nodes in the group is limited L. Therefore, many nodes
can be merged. This operation minimizes repetition in n@de.s in V can be pruned from the calculation. To efficiently find the
If the two node sets can be merged, then the merged node sejdtral node for a group of topic nodes, a heuristic apprasch
inserted as a child node of the current node set in the tree. gxbposed that first identifies a few central candidates withsing
most one node can be different between the current node det g@guation 4, and then find the best one by computing the céptral
the probed node set as there is a sibling relationship. Tdvere of the subset of candidates.
merging two node sets is equal to adding one additional nade i
the current node set. Before the node can be inserted, thédancAlgorithm 4 SELECT_CENTRAL(G, V)
CHECK_GROUPING checks if the node can be grouped with onei: Initialize an array, denoted aféteCount
of the existing node sets already in the tree index. : for each topic node; in V,; do

In No_OVERLAP_GROUPING shown in Algorithm 3, the leaf 3 Get the node sev,, 1, reachingu; in L hops // Use indexed
nodes of the SETree are sequentially accessed to genezate-th ]:7 r[vi] in Algorithm 6

. - e or for each node, € V,, 1, do
overlapping groups. If a node is in an existing group, themtbde VoteCounf, | += 1 v
will be removed from all other groups. By repeating this psxe . SoRT(VoteCoun}
all no-overlapping topic node groups are generated. : CandidateSet— get the top nodes fronvoteCountwhere the
value is equal to Mx (VoteCount

8: Setbest+ @

3.2 Selecting Centroid Nodes 9: Setc <0

) ) ) 10: for each candidate. € CandidateSetlo
Given the social network grapy = (V, E), and a topic node 11 Cy, + CENTRALITY_COMPUTATION(v., Vj, G)
groupV, C V,anodev. € V is selected as the “central” node of12:  if C,, > cthen

the group based on the closeness centrality metric whemsay 13 best« v,
or may not be a topic node ili,. A central node for a group is 14f c 4 Cy,
important as it can reach the nodesiipmore quickly than other 15: "éturn best

N
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The brief procedure of central node selection is presemted4 APPROXIMATE L-LENGTH RANDOM WALK
Algorithm 4. From Line 2-Line 5, the common nodes reachel RW-A)

by the topic nodes ."Vg within L hops_ are computed, an_d theTo address the limitations &fCL-A in Section 3, we now present
number of votes (usingoteCouny of topic capable of reaching a2 novel approach to select representative nodes for topissch

common node is stored. In other wordspteCount FePresents ., ihe technique of ad.—length random walk [17]. First, we
the hlt_tlng frequency of a common n_ode. The nodes with thet_m ke R samples ofL-length random walks for each node. The
votes inVoteCountbecome the candlldate'set. For e.ach Cand'dabere-computed values can then be used to reduce the cost of
we compute the closeness centrality using Equation 4. amct
CENTRALITY_COMPUTATION is used to compute the centrality
of a node for a topic node group ifd. In Line 10-Line 14, the
best central node is determined by identifying each passibtie
in the selected candidate set, and storetezt The best central
node may change through the following optimizations: (1)9Th4'1 L RW-A Index
candidate set is further reduced by repeating Line 2-Lineits w To index the random walk sample#; inverted lists are con-
smaller; (2) The identified central node from the candidate sétructed, each of which contain sublists. The sample siz&
can be further adjusted by probing the nearest neighborsnodg@n be bounded by applying the Hoedding inequality [13],civhi
until the new centroid cannot be increased. Further enlmaewces balances the tradeoff between the sample size and the agamfra
to select the best centroid are beyond the scope of this. paper €stimation using sampled data. For each node sublist contains
the L-length random walks originating from node In addition,
3.3 RCL-A Algorithm and Limitations of ~RCL-A a time-variant visiting frequency indel{ [L][»] is maintained to

TheRCL-A algorithm is presented in Algorithm 5, which includedrack the maximum frequency required to reinforce the PagkRa
an offline stage to pre-compute representative nodes fcicst,opra”k'”g score in Section 4.2. The visiting frequency of agwaith
and the online PIT-Search based on the pre-selected repatige '€9ards to parametdr measures the frequency of the node to be
nodes and query-related topics. This offline process igiedeent V|§|ted intheL iterations. Here, we S|mullate thg time-variant states
of online queries issued by users. The space cost is dordibgte USIN9 & number of iterations. The resulting visiting fremjes are
O(argmaz{|V;|?}) wheret is any topic in the maintained topic used to compute representative nodes when performing exvert

space, andV;| is the number of nodes containing the topim reinforceg random yvalk [24]. .
the social networkG. Algorithm 6 depicts how to construct the index when perform-

ing a sample-based random walk ov&r The R inverted lists,

generating representative node sets for any topic in th@lsoc
network. Finally, the local influence of topic nodes can bgratied
to the representative nodes using an absorbing random .walks

Algorithm 5 RCL-A denoted byI[R][n], are organized as a two dimensional array
1: // Offline pre-processing where I[i][w] indexes thei-th L-length random walk starting at
2: Generate topic node groups using RANDOM_CLUSTER() in  nodew. Here H[L][n] is used to maintain the time-variant visiting

Algorithm 1 frequency of each node in the time periadZ], i.e., Iteration-1 to

3: for each group € S do

4:  Generate the central node as a representative node usﬁﬁ? ation.. First, the algorithm initializes the array$r][n] and
SELECT_CENTRAL() in Algorithm 4 L][n]. Then, for each node in V, the algorithm performs?

5. Weight the central node based on the number of topic nodesfnlength random walks starting with node. For eachL-length
the groupg random walk, the path is chosen by randomly selecting a beigh
6: // Online PIT-Search _ ~ of the nodeu (u=w in the first iteration), and iteratively replacing
£ Gle”e,rﬁte Tgrk PIT List using FERSONALIZED_SEARCH() in  the nodeu with a selected neighbar. To avoid repeating nodes
_ Algorithm 1 . in the selected path, wsitedv] array is used to track the status
8: return Top-k PIT List . . L
of a nodev. At the same time, the maximal visiting frequency for

each node is selected for a given iteration, and maintained. i

While RCL-A is a useful heuristic to solve the problem, therg, 4qgition, 7, [n] is used to index all the nodes that can reach to
are a few limitations to the approach. noden within L hops.

« Limiting one central node produced from one group may
increase the influence skew between a central node im@ Effective Representative Node Selection

Iargltz grm:pbatndt a cetntrlal ndode n a str_nallt_group. -l;jhEiven a setV; of nodes related to topi¢ in G, the task in
CO;J. ctpn rlhu ? 0 ::gr;lra no _estlgver-eg llmatlng (I)<r U0&his subsection is to select a set of nodes that will becoree th
estimating the focal influence in the social network. . representative nodes for the node $ét The selected set of

e Limiting each group .to one topic node may not b,e PreCiSedes should be a near-optimal node set, and be as clogg to
wh.en. allocating the mfluence o the representatwe nodeass possible. To do so, a novel personalization model sintdlar
Thls |s.bec§use a topic may be have different represenfgégeRank is developed to rank nodes based on centralityifiees
tives with different probabilities. and diversity

« RCL-A is based on a time-homogeneous approach to Building on the PageRank strategy [23] and the idea of a

l(‘:_lusterlng." It may not be sufﬂc_@nt to only Cof‘s'der th?/ertex-reinforced random walk [20, 24], a diversified PagdRa
important” paths when determining the centroids for th?anking function can be formalized as follows:
given topic nodes. This is because some paths to be visited '

frequently will play important roles when evaluating thePT+1(v) — (1= \)P*(v)+ A Z Py(u,v) x NT(U)PT(u)
centrality of nodes. (weE Dy (u)

o Computing a central node witRCL-A is expensive, and ' (5)
the number of generated groups may be very large. where




Algorithm 6 INVERTTVHIT_INDEX(G, L, R) Algorithm 7 REPNODES(G, t, A, p, H[L][n])

input: A graphG = (V, E), two parameterd, and R input: A graphG = (V| E), a topict, a parameten, a percentage
output: An inverted index/[R][n], a time-variant visiting frequency valuep € (0,1), and a pre-computed time-variant visiting frequency
index H[L][n], and reachable indek:. [n] index H[L][n]

1: Initialize I[R][n] + @ output: The selected representative nodés

2: Initialize H[L][n] + @ 1: Topic node seV; from V for ¢ retrieved from an inverted node

3: Initialize I [n] <+ @ index

4: for each nodev € V do 2: Initialize PRn] + @

5. fori<+ 1toRdo 3: Initialize PStafn] + &

6: Initialize visitedn] < 0 4: for each node € V do

7: U — w 5. if v € Vi then

8: visitedu] < 1/R 6: PStar(v) « rpy

9: for j «+ 1to L do 7. ese

10: v + Randomly selected neighbor of 8: PStar(v) <- 0
11: if visitedv] = 0 then 9. PRv].previouss+ 1
12: visitedv] + 1/R 10:  PRJv].current«+— @
13: I[i][w] < v 11: for i +— 1to L do
14: Ip[v] < w /I Index Ir[v] for Algorithms 1 and 12: for each node € V do

Algorithm 4 13: Get inlink neighbor node sét, of v in G
15: else 14: for each inlink node: € Vj, do
16: visitedv] + visitedv] + 1/R 15: Get outlink neighbor node ségyt of v in G
17: if H[j][v] < visitedv] then 16: for each outlink nodev € Vgt do
18: H{[j][v] « visitedv] 17: DTValue+= Py(u, w) x H|[i][w]
19: U v 18: PNTValue+= £05etitldlel » PRiv]. previous
20: return I[R][n], H[L][n], and/[n] 19: PR{v].current« (1 — \) x PStai(v) + A x PNTValue
20:  for each node € PRdo
21 PR[v].previous«+ PR[v].current

« P*(v) is arandom jump probability representing the priof?: PRv].currente o
preference of visiting a topic nodegiven topict. Assume ;ij (8382¥(1;e?>ngggeV|ouspa|rs INPRto a new arrayempPR
there arem nodes relating td. In this work, P*(v) is 55 cytPosition p x Vil

set tol/m if v is a topic node related té, otherwise, 26: Vr.+ + GETSUBARRAY (tempPRcutPositior)
P*(v) = 0. For different topics P*(v) can vary. 27: return Vi,

e Py(u,v)isthe “organic” transition probability prior to any
reinforcement. In this workP(u,v) derived from the
topic-related transition probability of an edge. Note thatompute the adapted PageRank score of the moatemoment;
Py(u,v) is only sensitive to the overall topics of socialusing Equation 5. After all the nodes are processed, théquev

users, as discussed in Section 2. PageRank score of a node is replaced by the current score a:
« Nr(v) is the time-variant visiting frequency of nodein  shown in Line 20-Line 22. Aftel. iterations, the nodes are highly
the random walks at Iteration (or timé). scored if they have large hitting times, and are close to dpét
o Dr(u) = X (uyer Polu,v;) x Nr(v;) is used to nodes inV;. Finally, the nodes are sorted based on the diversified

normalize the reinforced PageRank score in Equation 5PageRank score, and the top-ranked nodes are returned as th

. . . . epresentative nodes foras shown in Line 23-Line 27.
The key idea of selecting representative nodes is to rank tfwé)

nodes based on time-variant hitting times and closenesketo t
topic noded/;. Since the influence of a node is limited by distancét-3  Local Influence Migration of Topic Nodes
i.e., L-hops, the PageRank-style algorithm need only be ran usiNgw we propose a novel method to effectively migrate thelloca
L-iterations. By doing so, each node weight is based on thesnodefluence of topic nodes to the corresponding topic-relatsz
within an L-length radius. resentative nodes without running the actual clusteriggrithm

The detailed procedure of selecting the representativee naghown in Section 3. The key idea of influence migration is as
set is shown in Algorithm 7. First, all the nodes for topiare follows: Given a topic node, a number of random walk paths are
retrieved,denoted aB;. Two arrays,PRn] for tracking the up- generated starting from the topic node. For each random, path
dated PageRank score of each node,R8thfn] for maintaining a check is made to see if it contains any representative nodes
the personalized preference of visiting a node given tépire If so, the first representative node encountered is treagedna
initialized. Line 4-Line 10 set the initial values &Stafn] and absorbingstate for an Absorbing Markov Chain [10]. Once an
PRn|. Each element irPRn| is an object consisting of three absorbing state is entered, it cannot be left. After all efrdndom
values: (1) the node id; (2) The PageRank scoreprevious paths for a topic node are traversed, a set of representaitfes
for the previous moment; and (3) The PageRank seorarrent that are locally close to the topic node based on all of rafigom
for the current moment. The remainder of the loop calcultdtes selected paths is determined. The procedure is then repeatec
diversified PageRank score for each nodd.iength iterations. for each representative node, and all topic nodes encashter
In Line 14-Line 18, the normalized, reinforced PageRankes@r first and absorbed are found. Here, a topic node in an absorbec
calculated for the node by accessing every inlink neighbor nodestate represents means it will be absorbed by the startidg no
and the indexed time-variant hitting tim# [i][v] for nodev at for the path. By repeatedly determining forward and backward
the moment. Here,PR[v].previousis the time-variant PageRankabsorption, the likelihood of discovering the closest espntative
score of the node) at the moment — 1. Line 19 is used to nodes for each topic node is maximized. Then, the local infleen
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weight for each topic node is migrated to the local repredemt Line 13-Line 18 are normalization of the closeness profigbil

nodes based on a probability distribution of closeness dwtw distribution for each topic node relative to its represtvganodes.

each topic - representative node pair. After all the sampled paths are processed, the aggregated sc
To compute the closeness probability distribution for ¢opi of each representative node is calculated as the overalkeimie

representative node pairs, an association makfix, j) is used. migrated from the locally related topic nodes as shown in lige

Each entry represents the distance between the currentrtode Line 22. Lastly, the updated and weighted representativée no

¢ and the current representative nogleThe simplest distance setV., is returned as the sampling node set for evaluating the

function beingD(i, j)+1] 1. The shorter the distance, the highemfluence of topic for each user.

the closeness between the topic node and the represemtatee

As such, the_ representative will absorb more local in_fluence 4.4 LRW-A Algorithm

from the topic:. After all of the random paths for topic nodes

and representative nodes have been processed, the thrixAIgorithm 9LRW-A

; : ’ 15 — M (i,5)
is normalized as\M’ where M'(i,j) = S 7) Assume  — =S Dre-processing

there are#Rep representative nodes and :topic nodes fort.  2: Generate topic-based representative nodés; using
Based on the normalized matrix, the aggregated influencectf ea REPNODES() in Algorithm 7 . '
representativej is calculated a% S2™, M'(i,5) where each ¥ Weight  the  selected representative  nodes  using

. - " . INFLUENCEMIGRATION() in Algorithm 8
topic node is assumed to have a uniform local influence welght 4 /] Online PIT-Search

It is easy to see that a topic node can be represented byetiiffer . sanerate Top: PIT List using FERSONALIZED_SEARCH() in
representative nodes with different probabilities. Algorithm 10

6: return Top-k PIT List

Algorithm 8 INFLUENCEMIGRATION(¢, I, V;. +)

input: An inverted index/[R][n], a representative node sét, for a The LRW-A algorithm is presented in Algorithm 9, and
tOPICt' ] ] . consists of two stages: The first is an offline stage to preptien
output: Awelghted representative nogle set: node—.> weight representative nodes for topics, and assign the weight ¢h ea
1: TO(ijC node sel/; from V for ¢ retrieved from an inverted node representative node using the absorbing strategy; The déstre
Incex online PIT-Search based on the pre-selected representaitles

2: Initialize |V;] x |V;.;| adjacency matri¥\/ +— & X : S

3: for each topic node; € V; do and query-_related _toplcs. As the offlme pre-processmg)d;ated

4:  GetR random paths froni[R][v;] after a period of time when the social network and topics have

5. for each pathp in I[R][v;] do changed, it is independent of online queries. The space sost i

6: if p contains a representative node. € V.. and dominated byO(|R|n) where|R| is the number of inverted lists,
M(vi,vr) < Bloror )51 then andn is the total number of nodes in the social netw6ik

7 M (vi,vr) < Br—y7T ul,‘ E=E

8: for each representative node € V;e do

9;  GetR random paths frond [R][v,] 5 PERSONALIZED INFLUENCE OF TOPICS

10: for_feach pattp in I[R][v,] do In this section, a materialization algorithm is presentedt t

1 if p contains a topic noder € Vi and M(vi,vr) < efficiently computes the personalized thptopics for each user
Do el e by evaluating the infl f th tative nodes. oo d

" M(@Pv " L y evaluating the influence of the representative nodes. dlo

: B o D(ve,vr,p)+1 this, two significant problems must be overcome: (1) Everyenod

13: Initialize |V;| x |V;.:| adjacency matrixy’ + &
14: for i < 1 to |V4| do
15:  for j < 1to|V,,| do

must be materialized; and (2) An efficient tépalgorithm that
is topic-specific is needed. These two problems are addtesse

16: row_weight+= M [3][4] Subsection 5.1 and Subsection 5.2, respectively.
17:  for j+ 1to|V,,.| do
. 1110 M i
180 M[d[j]  MIi][j]/row_weight 5.1 Personalized Influence Propagation Index
19: for j < 1to |V, do . -
20:  for i + 1to|V;|do Different from the general problem of finding the shortesthpa
21: column weight+= M’ [i][4] ) in a graph, personalized search of topics only requires sode
22:  UpdateV..; by v; — columnweight+ “nearby” a given social user node in the social graph. Here,
23: return UpdatedV;. “nearby” means a node that can reach a given social user with a

transition probability above a fixed threshold. Since tlamsition

The procedure for migrating local influence of topic nodegrobability of the propagation path decreases as the patandie
to representative nodes is detailed in Algorithm 8. Firb t increases, only the nearby nodes are selected in persehaliz
topic node sel; is retrieved from the topic-based inverted nodsearch. Therefore, shortest paths for all node pairs inrdyghgare
index. The nodes ifV; are the same as originally generated imot necessary, and only a small subset of nodes for eacingtart
Algorithm 7, and can be reused in an implementation. Thepgsition must be materialized.
an adjacency matrix¥// is used to track absorbing relationships The key idea of the materialization is as follows. For each
between representative nodes and topic nodes. For spaslesgr nodev in G, v is initially selected as the root of a backward-
an adjacency list could also be used here. In Line 3-Line €, thased tree, and a reverse breadth-first-search (BFS) ismedo
absorbing representative nodes are identified for eacls tomle For each node: linked to v, w is inserted as a child aof if the
based on the? random walks. In Line 8-Line 12, the topic nodedransition probability of the current path (braneh}— v is above
are identified that can be absorbed by a representative rasdzlb 6. Then, the nodes’ linking to the nodes: are probed. 1.’ does
on the randomly selecteld paths of the given representative nodenot appear in the path < v, and the transition probability of



u' — u < v is greater thar®, then’ is inserted as a child of 5.2 Computing Top- & Personalized Influential Topics

u in the tree. If the transition probability af’ — u — v isless Gjyen a set of topicd’ related to a query issued byv, the key
than, then the expansion of the branch is terminated. Note thajfaa of a topk PIT-Search algorithm is to first select the thp-
node is allowed to appear on different paths (branches)kitrée.  topic candidates by probing the materialized node index, aind

Until all possible nodes are fully probed, the tree mairgaf of  the representative node setsBf After all of the representative
the nodes where each node should have at least one propagaiigyes appearing near have been processed completely, some
path reaching, and the propagation probability is greater tifan topics can be pruned frofff if the topic cannot be in the top-
For any node in the tree, if it has additional incoming nodess b topic candidates based on the upper bound of the aggregate
these incoming nodes can not be included due to a low transitiyfyence score. If there are still possible topic candisigtat may
probability, then the node will be marked as a potential nwadg§  make it into the topk topic list, then additional neighbor nodes of
be expanded in an online search. v must be probed until the top-topic candidates can no longer

Finally, a hash map is created for the nad®ecause different be affected.
occurrences of a node in the tree represent can influencev
through different paths, the transition probabilities loége paths
tne propagation valle o a ookup table indexed bl nodes 1OPIC-anare epresentaive ode seis
. . . . output: Top-k PIT ListT
in the_trge are processed in g5|mllar manner. The hash m_bp ISt et query-related topics, from topic spacd’
materialized index for servicing personalized search fetaating

Algorithm 10 PERSONALIZED_SEARCH(q, v)
input: A keyword queryg issued byv, IndexI", Topic Spacel’, and

. : 2: Get representative node setg < {51, ..., S|, |}
nodev. The set of nodes in the hash map is denotel (as. 3T T,
4: for each topic; € T, do
5. vinner<+ S; NI'(v);
- 6: /I S; is the representative node set of topjandI'(v) is the
03 indexed nearby nodes of obtained fromw.hashmap
7. for each node: € vinnerdo
8: influencet= v.hashmapu) x S;[u]
9: /I S;[u] is the local weight ofu representing the local topic
nodes to be calculated by methods in Section 3 and Section 4
10: WT [tl] —1— SZ [u]
K _ ! 8 11 heagt;] <—kinfluence
B Threoldo0m 12:  UPDATE(T", heap
012 05 ° 08 J 13:  S; < S; \ vinner
For node 8, we maintaina hashmap : 14: F*(U) < {U* € F(U)}
e | transition 15: /I T*(v) C T'(v) is the subset of marked nodes with potential
e E— capacity to be expanded
Z 027 16: maxEP+ max{v.hashmapu®)|u* € I'*(v)}
5 030 17: for each topict; € T, do
Z 040 18:  if S; = @V min(T*) > W,.[t;] x maxEP+ heagt;] then
11 0.10 19: T + T\t
12 013 20: RemovesS;, from S,
21 if T\ T # @ then
Fig. 3. Personalized Influence Propagation Index Construction 22: EXPAND(I*(v),T",S,, T*, W, heap maxER

23: return Top-k PIT List 7"

Consider the example in Figure 3 with2 nodes and a The procedure of finding the top-+opics is presented in Al-
transition probability on each directed edge. For eachtgraggle, gorithm 10. At the beginning, the-related topics” are retrieved
the nearby nodes able to reach a given graph node for a siatjle jand the materialized representative node $ets {51, ..., Si7}.
traversal when the transition probability is aba¥ds recorded. Before the topics are processed, a copy topic’Bets created
Assume that? = 0.05, and the starting node is Node Based to track the remaining unprocessed topics. In Line 4-Linefds,
on a reverse breadth-first-search from Node 8, the tree in thach topict; € T, the influence oft; to v is computed if there
second figure in Figure 3 would be produced. By aggregatirge representative nodes foccurring nearby (stored ifi(v)),
the influence of different paths for each node, the lookupetaband the value is stored agnner <— S; N I'(v) in Line 5. For
in the table in Figure 3 can be generated. Note that the transi each representative node appearing inl'(v), the influence to
probability of each node does not consider the local weigibt. v is calculated by multiplying the local weigtf;[u] for ¢; and
compute the final influence for a given node for a topic, thime transition probability propagation to A heap maintains the
transition probability and the local weight are multipligelecall current influence of topics on.
that the local weight can be computed using the methods in After each topict; has been processed, the visited nodes
Section 3 and Section 4. In this example, only Nade will  (vinner) are removed from the representative node SetThis
be marked as a potential node to be expanded when refining ihéecause all influence starting fromne vinner to v is already
top-k personalized influential topics online. This is becauseeNo@¢ounted during the construction of node influence propegati
4 has no incoming nodes. Although Nodésb5, 7, 9, and12 in Subsection 5.1. The remaining local weight of each topic i
have incoming nodes, the nodes are already included in tlexin recorded in Line 10.

By doing this, unnecessary expansion is avoided, and thelbver Line 14-Linel6 are used to find the marked nodes that may
computation is more efficient. be expanded and the upper bound of the transition probabilit
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of the expanded nodes. Then, the topics that cannot be in #®W,[t;] x maxEP+ heagt;]. For ¢;, the upper bound is
top-k are pruned fromZ” based on the intermediate results adV..[t;] x maxEP+ heapt;] = 0.25 x 0.1 + 0.055 = 0.08.
shown in Line 4-Line 13. A topid; can definitely be pruned Because the upper boun@.(8) of ¢, is less than the current
under two conditions: (1) No remaining representative saaie influence value ot,, t; can be pruned from further computations.
in S;; (2) The minimal valuemin(7"*) is larger than or equal to Similarly, 3 can be pruned safely since the upper bour®l i§7.
the influence upper bound df, where the upper bound valueThereforets is returned as the toppersonalized influential topic
of ¢; is the aggregate of the currently computed influence for nodesS.
heaplt;], and the maximum possible influence of the remaining
representative nodes. This can be estimatediiyf¢;] x the 6 EXPERIMENTS
maximum transition probability propagation of the markedies )
with remaining expansion capacity in the indexvof 6.1 Experimental Setup

Finally, the algorithm terminates whelf = T*. Otherwise, All algorithms are implemented in Java and ran on a 3.0 GHd Int
function EXPAND is called to explore nodes further away frarm  Pentium 4 machine witBGB RAM running Windows 7.
order to make sure that any remaining topics are considétesl. Twitter Dataset: We use the large dataset (dataincluding 3
function EXPAND is shown in Algorithm 11, and shares severahillion social users) to evaluate the performance of PHFsk,
key variables with Algorithm 10. The main difference is thia and show the average running time and space cost of building
termination of the algorithm must be checked when each topitdexes. In this work, we use the dataset originally desctib
in Line 2-Line 14 is processed. The functionPbATE is easy by [16] which contains284 million “following” relationships,
to implement, and keeps the current togepic candidates and 3 million user profiles, ands0 million tweets. The dataset was

influence scores ifi’* according to the current heap status. collected in May2011 by the FORWARD research group at
University of lllinois at Urbana-Champaign.
Algorithm 11 ExpaND (I (v),T", Sy, T*, W, heap maxER In addition, we generate synthetic datasets from the larger
1: for each node: € I'*(v) do dataset. Using a similar node degree distribution, threxhsyic
2. for each topica’ € T' do datasets are produced from the nodes with degree raige
3 ulnner < .5, N T'(u) 100, 101-500, and500-1000, respectively. The three datasets are
4f for' each nOd? € ulnnerdo denoted as datgy, for 350k nodes, datas,, for 1.2m nodes,
5: influencet= u.hashmayz) x Sy [z] . ;
6 W] « 1— Sya] and datgm including 3m nodes. We also generate a.small dataset
7: heagt'] += influence (datay;) with 2000 social users selected from the original dataset
8: Sy < Sy \ ulnner using random selection. This is primarily used to compaesres
9: UPDATE(T", heap the ground-truth method. To ensure each generated dagset i
10: it Sy =2V min(T*) > W, [t'] x maxEP+ heagjt'] then  connected graph, a few synthetic edges among the close node:
g ger?oi/re S\ /tifrom S across disconnected components are added. The summargef the
13 if 7' \Tkt: > theﬁ, datasets is shown in Figure 4.
14: break i
15: Thew I'hewU I (w); Gt TR 0095500~ Real
16:  RecordmaxEPin I'new data o, 12milion  101-500  Synthetic
17: if T\ " # & then datasor 350,000 51-100 Synthetic
18:  EXPAND(Thew 17, Sy, T", W,., heap maxER datay, 2,000 1500 Synthetic

) ) ) ) ) Fig. 4. Summary of Datasets Used
Using an example social network and index in Figure 3,

the procedure of find_ing personalized influential topicsrased. _Topic Generation: In this work, we use a collaborative method
Assume that Nod@ issues a query related to the three topicg) generate a set of topics for each Twitter user. Given atd@wit
t1, ta, andts, andk is set asl. The setsl; = {t1,%2,¢3} and ger, we first treat the posted messages as a document, dgid app
Sy = {51 = {1,3,5,12}, 82 = {7,9,10}, 53 = {2,4,6}} 4 simple LDA (Latent Dirichlet Allocation) topic model to ¢h
are instantiated. Herel(8) = {1, 4, 5, 7, 9, 11* 12 For gocyment to generate a bag of terms (normaByterms) to be

ty, vinner = S, NT'(8) = {1,5,12}. For each node in the 1opic seeds of this user. Then, we refine the topic seeds ir ea
node setvinner, the influence to Nodé is calculated. If each ,ser ysings3,388 tags in the benchmark dataset released at the
node in S is assumed to have.25 as the local weight, then o |nternational Workshop on Information Heterogeneity a
the aggregated influence dfl, 5,12} relative to Node8 is  pysjon in Recommender Systems (HetRec 2011). Each tag was
8.hashmapl) x 0.25-+8.hashmags) x 0.25+8.hashmapl2) X frequently bookmarked by,867 web search users. By doing this,
0.25 = 0.055. The remaining local weight of; is 0.25. \ye have a reasonable set of topic seeds for each Twitter Bger.
Similarly, the influence oft, relative to Node8 is computed repeating the above process on each Twitter user, we cangeod
as 8.hashmap7) x 0.33 + 8.hashmagd) x 0.33 = 0.19. The 4 |arge number of meaningful topics. For example, the tdal af
remaining local weight oft; is 0.33. For t3, the influence 10 the generated topic spaceli$ million where each user has about
Node 8 is 8.hashmap4) x 0.33 = 0.09. The remaining local 90 topics extracted from50 tweets in the large Twitter data.

weight of £s is 0.67. At this stage, the intermediate results ar%aselines: In order to evaluate the effectiveness and efficiency of

g o T N k=1 _
geapif {{?ﬁ 780'0*55?120}? %19’}3 {5 2}09’11}* 7; {J} {tgi('j the new PIT-search method®CL-A andLRW-A), we use three
L o2 23 T S N ’ _different baselines.

maxEP = 0.10. Based on the intermediate results, the topics
that are not able to be the tdptopic are pruned. Sincé; and o« BaseMatrix is used to produce ground-truth results over
S3 are not empty, their influence upper bounds are calculated a small Twitter dataset. The idea is similar to [19]. For
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eachg-related topic, the influence is propagated to thiéhe top%. In addition, our experiments also show that all these
social users through a number of matrix multiplicatioomethods consume reasonable memory space when processing th
iterations (set t& in this work). As such, the influence small dataset, i.eBaseMatrix required up tol29MB, and the
of the topic on the query user can be aggregated at tbhther methods used up 88MB. In further timing experiments,
end of the matrix multiplication. The propagation procesBaseMatrix is omitted since the performance is so poor. In this
is repeated for each-related topic. After that, the top- small dataset, varying does not change the time cost for any
k g-related topics can be determined by comparing thef the methods. This is becauBasePropagation, RCL-A and
aggregated values of different topics on the query user. LRW-A have to access most of the nodes to identify theitop-
o BaseDijkstra first computes the shortest path from eachesults.BaseM atrix must perform matrix multiplications in all
topic node to the query user using Dijkstra’s algorithm [4]iterations. The time cost @aseDijkstra is dominated by the cost
and then replaces a sub-path in the shortest path with @ihcomputing the shortest paths. Therefore, the running isne
alternative path that can connect the two end points of tliresensitive tok in the small dataset.
sub-path. By repeating the replacement operation, we can
generate a number of distinct paths from the topic node to
the query user node. LO0E+05
o BasePropagation is a heuristic method, which is used
to process the large Twitter dataset becaBaseM atrix
is too space inefficient on the larger dataset, requiring E00 | =R
120GB of RAM, and BaseDijkstra is too computation- gl B e
ally expensive. The basic idea BlsePropagation is to 0 20 30 s00
calculate the propagation influence of each topic node fopkse
for a given user using only the personalized influence
propagation index described in Section 5.1.

-
=}
S
m
*
=)
I

L00E+03 4 | . . - - BaseMatrix
1.00E+02 o --x - BaseDijkstra
1.00E+01 =~ BasePropagation
1.00E+00 - A RCL-A

Completion Time (s)

Fig. 6. Time Cost of PIT-Search using Datas,,

6.2 PIT-Search Efficiency

To test PIT-Search performance, we sele@d tags to represent
a user’s keyword queries. Each tag would prod@fé+ topics 1.00E+05
for the Twitter dataset in the topic generation processnThe
randomly select an additiondd users, but keep theE00 sampled

-
=)
S
m
gh
o
R

1.00E+03 o - - BaseMatrix
1.00E+02 - -~ BaseDijkstra
B~ BasePropagation

Completion Time (s)

keyword queries unchanged. The average over all of the mans a i‘;gig; s RCLA
used to fairly assess the PIT-Search performance. Looe01 | L
1.00E-02 T T T
1000 2000 4000 6000
Representative Nodes
1.00E+05
Z100e+04 {4 X Ko A *
g 1.00E+03 4 K - BaseMatrix i i i i .
£ 100E+02 4 oo | i - gasegukstra ' Fig. 7. Time Cost of PIT-Search for the Top-100 Topics using a different
5 1.00£+01 e oA gt number of Representative Nodes and the Datas,,, collection.
% 1.00E+00 ] —e— LRW-A
g 1.00E-01 1 = [ [ | ] )
8 100E-02 4ttt For a selected query, the large Twitter dataset has around

0o o am 3000 g¢-related topics on average, and eaghelated topic has

20,000 topic nodes. So, we maintal)00 representative nodes for
each topic in the materialized index. Figure 6 shows theameer
Fig. 5. Time Cost of PIT-Search using Datasy, processing time of the proposed methods wher- 100, 200,
300, and500. BaseDijkstra requires aroun@5 hours to complete

Figure 5 shows the time cost for the methdglsseM atrix, the task,BasePropagation needs6.6 minutes, andRLC-A /
BaseDijkstra, BasePropagation, RCL-A, andLRW-A over the LRW-A use only230 ms. From Figure 6, we observe that the
small Twitter dataset when the = 10, 20, 50, and 100. The average query time d?L C-A andL RW-A grow very slowly ast
performance gap between each approach is quite evident. Fareases. The low-latency is still promising for onling4karch.
instance,BaseMatrix and BaseDijkstra take around5 hours From the experimental result, the algorithms are insesmsitd
and1 minute, respectively. This is becauBaseM atrix performs k& because personalized search can prune the low qualitystopic
many matrix multiplications in a sparse array when computirand filter the expanded nodes at the same time based on the
the influence for all the possible paths from topic nodes ® tlintermediate results.
user nodeBaseDijkstra spends the majority of the processing Figure 7 compares the completion time when we vary the
time computing the shortest paths. Here, the length oftiteres materialized sizes of representative nodes for each t&ice
is set as6 in BaseMatrix. Obviously, the high-latency is not BaseDijkstra and BasePropagation have to evaluate the influ-
acceptable in an online search. Howe\BaisePropagation only ence of each topic node relative to the query user, they are no
requires 100 ms to return the tog personalized influential topics. affected by the change of representative node set size. Tdey h
This is becausd3asePropagation uses a materialized index tothe same time cost as that in Figure 6. However, the perfarenan
obtain the influence from a topic node to a query user withf bothRCL-A andLRW-A improve when the number of repre-
no further on-the-fly path computationRCL-A and LRW-A sentative nodes varies. For instance, a PIT-search canpyeestin
are the fastest approaches, requiring oRly ms to determine 70 ms if we materializel 000 representative nodes for each topic.

Top k Size
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But if we maintain6000 representative nodes for each topic, then

-

both RCL-A and LRW-A methods requirés00 ms before the ——
P 038 - ’—"*17‘77:/———!
PIT-search terminates. oA A %X [ Basemanx
_5 0.6 4 > |--%-- BaseDijkstra
'§ 04 | W BasePropagation
e a —&— RCL-A
6.3 Scalability of PIT-Search * o2 o LRwn
0
10 20 50 100
Top k Size
1.00E+05 v

@ 100E+04 X

E 1.00E+03 1 L d - - - - BaseMatrix . .

E Lookon | o . - - BaseDikstra Fig. 10. Effectiveness of PIT-Search on Datasy,

.§ 1.00E+01 g = BasePropagation

S 1.00E+00 - . A RCLA

E 1.00e-01 4 4 LRW-A

© 1.00E-02 T — T T . .. .

& w0k 1zm 3m result set aBaseM atrix when thek = 10. This is mainly because
Dataset Size BasePropagation is also an exact-computation method using a

personalized influence index to improve efficiency. In casitito

Fig. 8. Scalability of PIT-Search for the Top-100 Topics over all datasets BaseMatrix, BasePropagation may mis-appropriate topic node

using 1000 sampled representative nodes for each user. influence when probing expanded topic nodes.
1
1.00E+05 . e -
@ 100E+04 - x 081 e s % [ Basevanx
2 1.00E+03 A 7 . . |-+ Basematrix S 061 - x X7 X |- BaseDijkstra
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é 1.00E+01 4 ’ = BasePropagation & 04 —4—RCL-A
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) - ) Fig. 11. Effectiveness of PIT-Search on Datas,,
Fig. 9. Scalability of PIT-Search for the Top-100 Topics over all datasets

using 2000 sampled representative nodes for each user.

In order to evaluate the scalability of PIT-Search, we asebs
the average time cost for each method oved alatasets. Figure 8
shows the results wheh = 100 and the number of selected ly—= = = n
representative nodes 1900. Figure 9 shows what happens when o8y .
we change the number of representative node&0@). From

- =¥ - BaseMatrix
061 6o Koo *|--x- BaseDijkstra

Precision

the two figures, we can see thRCL-A and LRW-A are not o4 L meRreen
sensitive to the change of dataset size, while the otheloappes 0.2 e LRW-A

become even more inefficient as the collection size gronwsmFr 0
the comparison of this two figures, we can observe that change

from 1000 representative nodes 2900 representative nodes does

not incur a noticeable performance decrease. The compaalso

shows that the efficiency of PIT-Search over datas better ri; 15 Etectiveness of varying the number of Representative Nodes
than that of datas,,. This is because the average node degrea Datas,, and k = 100

of data o, is much larger than in daig. So, the expansion
operations incurred by higher edge degrees in the graphesailt r
in a measurable performance degradation.

1000 2000 4000 6000

Representative Nodes

Since itis not feasible to udgaseM atrix on the larger dataset,
we compare the approximation algorithms BasePropagation
in Figure 11 instead. Figure 12 shows the impact of varying
6.4 PIT-Search Effectiveness the number of representative nodBsiseDijkstra has the lowest
To measure the effectiveness of the PIT-search approxmatiprecision, followed byRCL-A as seen previously. RW-A can
methods, we treat the generated results fidaseMatrix as the achieve the best precision — abd¥&. The precision oRCL-A
ground-truth for small Twitter dataset since it exhaudyiyero- can be further improved by increasing the size of the mdizeih
cesses all path8aseMatrix selects the personalized influentiakepresentative node set. Increasing &2 for 6000 representative
topics based on the exact influence computation for topios. Fhodes in Figure 12. Howevdr,RW-A increased precision comes
simplicity, we consider only Precision in Figure 10. By comipg at a performance cost as discussed previously. This obgervat
the topics returned witBaseM atrix, we can see thdaseDijk- corroborates our claim that the effectivenes& BW-A at select-
stra has the lowest precision, followed IRCL-A. The precision ing representative nodes is better tiR@L -A. If we select enough
is around0.7. From Figure 10, we can see thzaésePropagation quality representative nodes for a topic witRW-A, then simply
and LRW-A have similar precision — aroun@85 when thek increasing the number of representative nodes cannot brirahn
is between20-100. BasePropagation can achieve nearly samemore benefit td. RW-A when assessing a topic’s influence.
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numbers of nodes when grouping the topic nodes, the time of
selecting central nodes RCL-A does not exhibit any noticeable
change. The main reason is thRCL-A spends most of the

-

o
o

-k - BaseMatrix

e time on the central r_10de computatio_n, and _not on the noqle pair
/ aRoe grouping determination. Therefor_e, increasing the samat®
I o does not affect the pre-computation time. In all three catbes
2 ek 1zm 3m space cost jumps up ®GB, which is mainly dominated by the
Dataset Size space required to load nodes and théength node set. When
compared withRRCL -A, LRW-A needs more space &sincreases.
Fig. 13. Space cost when searching with k& = 100 on all datasets with HO,WG,Ner'R is often a reasonably Sm?” valugop) in practlce.
1000 sampled representative nodes. This is because the average degre@Gisn the large Twitter data
graph. The advantage &fRW-A is that it only takesl4 seconds
to identify the representative node set for a topic, and ffeeteof
16 . R to the running time is negligible. This is because most of the
i processing time oE RW-A is spent on the process of computing

- - BaseMatrix

110X / -~ BaseDikstra ranking score for every node in the graph in order to select
S e representative nodes for a topic. Once the representatidesn
L / —+ LRWA are selected, the absorbing procedure can be quickly fishishe
" o 1om am Here, we do not include the time cost of constructing fRlength
Dataset Size random walk index (Algorithm 6 discussed in Section 4.1ksin
the sampling index only needs to run one time for a dataset for
both algorithms. In our experiments, building thdength random
walk index required around seven hours &@B of space when

R = 200. Since it is only ran once, this cost is amortized.

o
o

Space Cost (GB)
)
=

=3
N

=)

Space Cost (GB)

Fig. 14. Space cost when searching with £ = 100 over all datasets with
2000 sampled representative nodes.

6.5 PIT-Search Space Cost

In Figure 13 and Figure 14, we demonstrate the space cost when 600
searching for the top00 influential topics over all datasets. Here, igg —
each topic’s influence for a query user is calculated usity) or 200 |
2000 pre-computed representative nodes. From the experimental 200 | o L
results, we can see thBaseMatrix consumes significant space. 100 -
All other methods have reasonable space usage during a PIT-

Search. In addition, we can find that the space coRQIf -A and

LRW-A processing queries over the dafacollection increases

quickly because the dataset contains a large number of query

related topics. Since there are many possible matches,ga Idfi9- 16. Index construction time for Dataz.,

amount of space is consumed when loading the representativeF_ 16 sh he i ired h s10d
nodes at the beginning of Algorithm 10. But the space cost igure 16 shows the time required to compute the centraisiode

is still less thanBaseDijkstra and BasePropagation because O Fepresentative nodes dsvaries forRCL-A andLRW-A. As
][r increasesRCL-A requires more time to compute the central

BaseDijkstra has to maintain many intermediate results whe des. Th . is that | | lead 1o |
computing the shortest paths, amhsePropagation needs to nodes. The main reason is that lahevalues may lead to large

retrieve all topic nodes into the memory at the beginningaathe group sizes. CFomputmg the central node of a large group isimuc
query evaluation. more expensive than for many small groups because the large

group may bring in many non-topic nodes into the selecticsph

Different from RCL-A, the processing time dfRW-A changes
6.6 Index Construction much less than irRCL-A. Therefore,LRW-A is the preferred
To demonstrate that the materializing cost for the topic-t@pproach for materializing the topic-to-representatiodenindex.
representative node index is reasonable, we report the dimde
space cost when we vary the sample ratRGL -A, the sizeR of
L-length random walks ih RW-A, and L for both.

Completion Time (s)

Parameter L

7 RELATED WORK
A significant amount of prior work exists in the study of infhoe

VTinRCLA 1% 5% 10% diffusion in social networks. For example, Richardson anchide

Time Cost(s) 150 510 560 gos [26] and Kempe et al. [11] formally defined the problem of
SpaceCost(GB) 2 2 2 influence maximization as finding a small subset of nodes in a
T LRWA 100200 300 social network that can maximize the spread of influencedase
Time Cost (s) IEERRTA the independent cascade (IC) propagation model. The prolslem i

Space Cost (GB) 2 3 4

further studied by Chen et al. [3] who consider the degreendisc
Fig. 15. Effect of Sample Rate on PIT-Search approximation algorithms ~ during the seed selection process. Goyal et al. [8] exterded
influence maximization problem by deriving influence progtéan
Given a topic, Figure 15 provides the average time and spagith time decay using action-based traces. Zhuang et al. [33]
cost as sample rate varies. For instance, when we sampdeatfiff addressed the problem of maximizing influence diffusion nvhe




the social networks are updated frequently. Guo et al. [@ppsed [2]
and studied the problem of personalized influence maximoizat
The problem is defined as follows: Given a target user, findallsm
subset of nodes which can maximize the influence spread to the

given target user in a social network. However, all the abwok  [3]
can neither be applied to select representative users freocial
network with regards to a topic, nor to PIT-search problem. [4]

Several approaches to personalization in social netwotiks e
A re-ranking method was presented by Noll and Meinel [21Ebas[5]
on user tag profiles which are derived from a useiéd.icio.us
bookmarks. The tags of each search result on the site ardedhtc
against a user profile. The authors go on to investigate h¢@j
accurate user profiles can be generated frdehicio.us data.
Similarly, Carmel et al. [2], Vosecky et al. [29], and Qian &t a
[25] developed personalized social search methods basedesn [7]
profiles and topics of interest. By comparing the search t®sul
against the user profiles and topic of interest, the mosvaate
results can be retrieved. The limitation of these appromdbe [8]
that personalization prefers results matching with a usefile
or query log. However, users are often reluctant to proviilee
information as it can be used expose and harvest persoralsdet[9]
Li et al. [18] is the most recent work to study the problem of
personalized search over social networks. A search reaussr’s
posts, and not matched topics as in this work. Li et al. used t[10]
shortest distance to simulate the social relevance betwsers
rather than influence between users as described in this Whek
other semantics of keyword search have been studied [516].7, [11]
Different from all the above works, PIT-search focuses qicto
based inter-influence among social users over social nkswor
other words, if a search topic is hotly discussed by inflanti[12]
connections, then this search topic will be highly recomdeehto
the user even if it does not match the user’s profile, querg,log
shortest distance. [13]

8 CONCLUSIONS

Personalized influential topic search in social networksans
increasingly important problem. In this paper, we propotesl [14]
problem of personalized influential topic search (PIT-8kBain
social networks. To make the PIT-Search more effective dind e
cient, we then developed two approximation approachesbdmpa[ls]
of selecting representative users as a social summarizéiioa
given topic. We have also designed and presented a perzeali
influence propagation index and a tépPIT-Search algorithm. [
Our experimental evaluation has verified the effectiverséshie
approximate approaches and the efficiency of thektapdex.
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