
1

Personalized Influential Topic Search via Social
Network Summarization

Jianxin Li, Chengfei Liu Member, IEEE , Jeffrey Xu Yu Member, IEEE
Yi Chen Member, IEEE , Timos Sellis Fellow, IEEE , and J. Shane Culpepper

Abstract —Social networks are a vital mechanism to disseminate information to friends and colleagues. In this work, we investigate an
important problem - the personalized influential topic search, or PIT-Search in a social network: Given a keyword query q issued by a
user u in a social network, a PIT-Search is to find the top-k q-related topics that are most influential for the query user u. The influence
of a topic to a query user depends on the social connection between the query user and the social users containing the topic in the
social network. To measure the topics’ influence at the similar granularity scale, we need to extract the social summarization of the
social network regarding topics. To make effective topic-aware social summarization, we propose two random-walk based approaches:
random clustering and an L-length random walk. Based on the proposed approaches, we can find a small set of representative users
with assigned influential scores to simulate the influence of the large number of topic users in the social network with regards to the
topic. The selected representative users are denoted as the social summarization of topic-aware influence spread over the social
network. And then, we verify the usefulness of the social summarization by applying it to the problem of personalized influential topic
search. Finally, we evaluate the performance of our algorithms using real-world datasets, and show the approach is efficient and
effective in practice.

✦

1 INTRODUCTION

The importance of social networks such as Twitter, Facebookand
WeChat in providing a convenient platform for users to share
information continues to grow. The dynamic nature of information
and user connectivity within these networks have presentedmany
interesting open research problems in recent years, such asthe
influence maximization problem [8, 11, 12, 14], and the topic
detection problem [28, 32]. However, a user issuing a keyword
query can easily be overwhelmed by the number of query-related
topics. This is because a large social network may contain millions
of social users sharing comments on various events or topics, and
these comments lead to new topics. In this context, identifying a
small set of topics that are relevant to the query is a challenging
problem. The most widely-accepted method is to select the rele-
vant topics based on the term relevance between topics and the
query in a manner similar to a typical keyword search [30, 31].

• Jianxin Li is with the School of Science, RMIT, Australia.
jianxin.li@rmit.edu.au

• Chengfei Liu is with the Faculty of Science, Engineering andTechnology,
Swinburne University of Technology, Australia. cliu@swin.edu.au

• Jeffrey Xu Yu is with the Department of Systems Engineering &
Engineering Management, The Chinese University of Hong Kong, China.
yu@se.cuhk.edu.hk

• Yi Chen is with Martin Tuchman School of Management, with a joint
appointment at the College of Computing Sciences at New Jersey Institute
of Technology, USA. yi.chen@njit.edu

• Timos Sellis is with the Faculty of Science, Engineering andTechnology,
Swinburne University of Technology, Australia. tsellis@swin.edu.au

• J. Shane Culpepper is with the School of Science, RMIT, Australia.
shane.culpepper@rmit.edu.au

An alternative approach is to recommend the latest query-related
topics for a query [18], but this may not be suitable in practical
applications since it does not consider older topics or discussions.

To address this problem, we would like to select a set of rep-
resentative users that adequately summarize a given topic,where
the representative users are evaluated based on their closeness to
the users (topic users) whose posted messages contain the topic
terms. In this case, if the query user is likely to be reached or
influenced by the selected representative users, then the query
user has a high probability of following or trusting the topics
recommended by the selected representative users. In this paper,
we refer to this problem asPersonalized Influential Topic Search,
or more succinctly PIT-Search. Our goal is not to find how a topic
influences a group of users, rather it is to find how important
topics and influential users might be better leveraged to meet a
specific user’s information need. In other words, if users are in
similar social contexts in the social network, they would see the
same results when they issue the same keyword query. PIT-Search
can be directly applied in many personalized services in social
networks, such as personalized recommendation and search,target
advertising, or personal product promotion.

1

2
 3

4

5

6

7

8
 9

10

11
 12
 13
 14

15

0.2
 0.3

0.1

0.4

0.5

0.6

0.2

0.5

0.4
 0.5

0.4

0.3
 0.6

0.1

0.4

0.5

0.1

0.5

0.4

0.8

(
t
1
)

(
t
2
)
(
t
2
)

(
t
1
,
t
2
,
t
3
)

(
t
1
)

(
t
1
)

(
t
2
)
(
t
3
)

(
t
3
)

(
t
1
,
t
3
)

(
t
3
)

t
1
 - {
Apple Phone
 }
 t
2
 - {
Samsung
 Phone}
 t
3
 - {
HTC
 Phone}

Fig. 1. An Example of Social Network Graph

Example 1 (PIT-Search).Consider the small social network de-

2

picted in Figure 1, where a node represents a user, and the edge
weights represent theinfluenceusers have over neighbors. The
direction of an edge shows the influential relationship between
two nodes. Here, assume users have expressed positive opin-
ions about topics being discussed related to mobile phones,
such asApple Phonefor t1, Samsung Phonefor t2 andHTC
Phonefor t3. A user may mention several different phones like
User13. Now suppose that User3 wants to know which phone
is the best choice for her by checking her social network via
a queryq = {Phone}. In this case, all three phonest1, t2 and
t3 areq-related topics, and there are three neighborhood users
(User1 - t2, 5 - t1, 6 - t3) who can influence User3, making
the choice a difficult one.

1

2
 3

4

5

6

7

8
 9

10

11
 12
 13
 14

15

0.2
 0.3

0.1

0.4

0.5

0.6

0.2

0.5

0.4
 0.5

0.4

0.3
 0.6

0.1

0.4

0.5

0.1

0.5

0.4

0.8

(
t
1
)

(
t
2
)
(
t
2
)

(
t
1
,
t
2
,
t
3
)

(
t
1
)

(
t
1
)

(
t
2
)
(
t
3
)

(
t
3
)

(
t
1
,
t
3
)

(
t
3
)

Fig. 2. Demonstration of Computing Influence of t1 for User 3

We address thi challenge as follows. Given topict1 in Figure 2,
the influence transition paths and corresponding transition
probabilities are shown below. Since there are five users
containingt1, each node is assumed to have an equal local
weight – 1

5 . The final influence score for a topic to a specific
node can be calculated by multiplying the local weight and the
transition probabilities.

Path Transition Probability

2→ 1→ 3 0.060
5→ 3 0.600

5→ 7→ 13→ 12→ 10→ 6→ 3 0.000
13→ 12→ 10→ 6→ 3 0.024

9→ 8→ 13→ 12→ 10→ 6→ 3 0.001
15→ 9 . . . 6→ 3 0.001

Aggregation× 1
5

Final Score= 0.137

Similarly, the influence of topicst2 and t3 can be computed
for User3 – 0.188 and0.065. Using the intermediate results,
a PIT-Search would returnt2 (Samsung Phone) as the top-1
result for User3 becauset2 is the most influential topic in
the social context of User3. If User 7 issues the same query
q, thent3 (HTC Phone) will be the top-1 result. Similarly,t2
(Samsung Phone) is returned ifq is issued by User14.

As shown in Example 1, PIT-Search can return different
topic results for different users even if they are issuing the same
query. There are three issues to be addressed when performing
an efficient and effective PIT-Search. First, a social network may
have a large number ofq-related topics. Secondly, for eachq-
related topic, a PIT-Search must compute the influence from a
larger number of topic-related users for the given user and query.
Thirdly, any given search can be mistakenly dominated by a few
influental neighbors. To reduce this bias, we need to derive topic
driven social summarizations for a social network.

To address the above challenging issues, we investigate the
problem of PIT-Search by developing the following three tech-
niques: topic-sensitive representative node selection, atopic-to-
representative user index, and a personalized propagationindex.
In order to perform topic-sensitive representative node selection,

and build topic-to-representative user index, we develop two novel
random-walk based approaches that can represent all topic nodes
using only a subset of topic-sensitive representative nodes based
on the influence propagation of a topic in the social network.Once
we identify the relations among topic nodes and representative
nodes, the corresponding topic-to-representative user index can be
then built to capture the topic-sensitive local influence ofsmall
communities in social networks. We then construct a personalized
propagation index that maintains a subset of nearby nodes and
the associated propagation probabilities for every node inthe
graph. The personalized propagation index is independent of both
topics and queries. With the support of both indexes, we can
efficiently assess the influence for anyq-related topic on-the-
fly. To efficiently find the top-k most influentialq-topics for a
user, we also present a dynamic top-k PIT-Search algorithm that
identifies the qualityq-related topics in the top-k result set based
on intermediate results. Low-quality topics are pruned from the
result set by probing as few nodes as possible. Using the three
techniques, we can greatly accelerate the performance of PIT-
Search in large social networks.

In summary, the contributions of this paper are as follows.

• We develop two novel random-walk based approaches
to select topic-sensitive representative nodes in a social
network. This captures the local influence for a topic in
different parts of the social network.

• We design a top-k PIT-Search algorithm to efficiently
compute thek most influentialq-related topics for a user
based on our proposed pre-computed index.

• We evaluate the efficiency and effectiveness of our pro-
posed techniques using a large Twitter dataset, and show
the benefits of our methods by comparing with three
baselines adapted from previous work on social networks.

The remainder of this paper is organized as follows. Section2
presents the formalization of the PIT-Search problem. In Section 3
and Section 4, we present two novel approaches for choosing
topic-sensitive representative nodes from social networks. We
present the procedures for building a personalized propagation
index and describe an efficient top-k PIT-Search algorithm in
Section 5. The experimental results are presented and discussed
in Section 6. Finally, we review related work in Section 7 and
conclude this paper in Section 8.

2 PROBLEM DEFINITION

Consider a social network graphG = (V,E, T,Λ) whereV is the
node set representing the social users in the social network, and
E is the edge set depicting links between users.T is a topic space
where each social user may have a set of topics extracted fromthe
user’s posted messages, e.g.,T (v) = {t1, ..., } for a nodev. Λ
maintains the transition probability of edges inE.
Definition 1. [Social Summarization] Consider a social network

G = (V,E, T,Λ). Given a topict ∈ T , a t-aware social
summarization ofG is the selection of a specified number of
nodesV ∗ from V that represent the influence of the topic
nodesVt which satisfy the following condition:

arg min
V ∗⊆V,|V ∗|≤specified

∑

v∈V

|I(t, v)− I∗(t, v)| (1)

whereI(t, v) = 1
|Vt|

∑
u∈Vt

∑
pi∈Pv

u
Pr(pi) andI∗(t, v) =∑

u∈V ∗ weight(u, t)
∑

pi∈Pv
u
Pr(pi). P v

u includes all possi-
ble paths fromu to v. pi represents thei-th path, andPr(pi) is

3

the propagation probability of pathpi by multiplying its edges’
transition probabilities maintained inΛ. For each selected
representative nodeu and a topict, weight(u, t) aggregates
the influence of a set of topic nodes clustered by the central
nodeu. The weight can be then taken as the initial propagation
power of the representative node when evaluating the influence
to the query user for the topic.

Definition 2. [PIT-Search Problem] Given a keyword queryq
issued by a userv, a social networkG, and the numberk
of items to return, a PIT-search returns thek most influential
q-related topics tov by satisfying:

arg max
Tk⊆T

{
∑
I∗(t, v)|t ∈ T k} (2)

whereI∗ is the aggregate influence of topics inT k to v, T k

is ak-size of topic subset selectingq-related topics fromT .

The problem of computing social summarization can be re-
duced to the optimal subset selection with constraints, which
is an NP-complete problem [1]. Therefore, computing social
summarization is also an NP-complete problem. In this paper, we
first address the challenging problem of selecting representative
nodesV ∗ in Section 3 and Section 4 in two different ways. Then,
we develop an online PIT-Search algorithm by using these pre-
selected representative nodes in Section 5.

3 APPROXIMATE RANDOM CLUSTERING (RCL-A)
In order to select a set of representative nodes for the topicnodes,
one approximate solution is to cluster the topic nodes, and then
identify a central node for each group. Lastly the local influence
for all unselected topic nodes is migrated to the central node. The
central nodes are then taken as the representative node set.The
aggregated local influence score for each representative node can
be used to evaluate the influence for topics to each social user.

3.1 Clustering Topic Nodes

The main idea of clustering topic nodes is to first measure the
common reachability of topics nodes for a given sample node set,
and then group the topic nodes into different clusters basedon the
common reachability. Here, the reachability of a node is simply the
number of sample nodes that can be reached by the node. Given
two nodes, the common reachability is evaluated as the number of
sample nodes reached by the two nodes together. The fundamental
assumption is that if two nodes can be grouped into one cluster,
then there is a high likelihood that these two nodes can reacha
certain number of common neighbors. In other words, the more
common neighbors nodes can reach, the higher the probability of
grouping the two nodes together.

To decide if two nodes can be grouped together or not, the
RCL-A solution is based on the following notion. First, select a
sampling node setV ′ from V . Three variants are used to measure
the grouping relation of the two nodesu andv:

• GP+(u, v) = |{x|x→Lu andx→Lv,x∈V ′}|
|V ′| wherex →L u

andx →L v mean nodex can reach nodesu andv in L
hops.GP+(u, v) represents the probability of groupingu
andv with regard to the sampling node setV ′.

• GP−(u, v) = |{x|x→>Lu if x→Lv orx→>Lv if x→Lu,x∈V ′}|
|V ′|

wherex →>L u meansx cannot reachu within L hops.
GP−(u, v) represents the probability of splittingu andv

into different groups with regard to the sampling node set
V ′.

• GP∗(u, v) = |{x|x→>Lu andx→>Lv,x∈V ′}|
|V ′| represents the

probability of not knowing if nodesu and v can be
grouped. This is equivalent to1−GP+(u, v)−GP−(u, v).

To group topic nodes, the following clustering rules are ap-
plied:

• Rule 1: Two nodesu andv are grouped ifGP+(u, v) ≥
GP−(u, v) andGP+(u, v) ≥ GP∗(u, v) hold.

• Rule 2: Two nodesu andv are not grouped ifGP−(u, v)
≥ GP+(u, v) andGP−(u, v) ≥ GP∗(u, v) hold.

• Rule 3: Two nodesu and v are grouped based on a
probability if GP∗(u, v)> GP+(u, v)≥GP−(u, v) hold.

The probability is calculated as GP+
(u,v)

GP+
(u,v)+GP∗

(u,v)
that

is also equal to GP+
(u,v)

1−GP−

(u,v)
.

• Rule 4: A node can only appear in one group (clustering
is hard).

Rules1, 2 and4 are clear. Rule3 has an implicit property.

Property 1.Grouping Probability: Given two nodesu and v, if

GP+(u, v) ≥ GP−(u, v), then GP+
(u,v)

GP+
(u,v)+GP∗

(u,v)
must be

larger than or equal to GP−

(u,v)

GP−

(u,v)+GP∗

(u,v)
.

Property 1 guarantees that the nodes can be approximately
grouped when they are in neither a “clearly in” state, nor a “clearly
out” state.

Algorithm 1 RANDOM CLUSTER(G, t, L)

input: A graphG = (V,E), a topict, a max hop lengthL, and the
numberC Size of clusters
output: A set of topic node groupsS

1: Get topic node setVt for t from inverted node index
2: Random node selection-based sampling subsetV ′ ⊆ V
3: Initialize an arrayGPLabel[|Vt|][|Vt|]← ∅

4: Initialize a temporary arrayTempVt ← Vt

5: for eachu ∈ Vt do
6: TempVt ← {TempVt − u}
7: for eachv ∈ TempVt do
8: Vu,L ← All nodes that can reachu in L hops //Use indexed

IL[u] in Algorithm 6
9: Vv,L ← All node that can reachv in L hops

10: G+ ←
|Vu,L∩Vv,L∩V ′|

|V ′|

11: G− ←
|Vu,L∩V ′−Vv,L|

|V ′|
+

|Vv,L∩V ′−Vu,L|

|V ′|

12: if G+ ≥ G− andG+ ≥ 1−G−

2
then

13: GPLabel[u][v]← 1

14: if G− ≥ G+ andG− ≥ 1−G+

2
then

15: GPLabel[u][v]← 0
16: if G+ ≥ G− andG+ < 1−G+ −G− then
17: Pr ← G+

1−G−

18: if rand() ≤ Pr then
19: GPLabel[u][v]← 1
20: else
21: GPLabel[u][v]← 0
22: SETree← SET ENUMERATION TREE(GPLabel[u][v])
23: S ← NO OVERLAP GROUPING(SETree, C Size)
24: return S

Algorithm 1 shows the procedure of grouping topic nodes
based on a random sampling node set. First, the topic nodes
Vt are retrieved from an inverted node index, and then a set of
nodesV ′ are sampled from the original node setV . In this work,

4

each node is sampled with a probability proportional to the degree
of the node, which will be further discussed in Section 6. Next,
two arrays,GPLabel[|Vt|][|Vt|] for labeling if two nodes grouped
together, andTempVt for maintaining the list of unprocessed
nodes, are initialized. In order to efficiently compute the grouping
probability, the node set for which every node can reach an entry
node inL hops is pre-computed and indexed. The procedure of in-
dex construction is shown in Algorithm 6. Line 16-Line 21 handle
node pairs that are not clearly in/out of a group. Here, the node
pairs are labeled by comparing the calculated grouping probability
Pr with a random generated value between0 and1. AsPr → 1,
the likelihood of a random grouping increases. Lastly, the topic
node groups are generated by calling SET ENUMERATION TREE,
and finalized by calling NO OVERLAP GROUPING.

Algorithm 2 SET ENUMERATION TREE()
1: Create a tree with rootr ← ∅

2: for eachu in Vt do
3: u← false
4: r.addChild(u)
5: for eachvx in the treer do
6: if vx 6= true then
7: Leftsibling← vx.getSiblings()
8: for each siblingvy ∈ Leftsibling do
9: if CHECK GROUPING(vx, vy) using the records in GPLa-

bel then
10: new← vx ∪ vy
11: vx.addChild(new)
12: vx ← true
13: return Set enumeration treer

In the Function SET ENUMERATION TREE shown in Algo-
rithm 2, a set enumeration tree data structure is used to maintain
the possible groupings. The tree is commonly used to represent
and/or enumerate sets in a best-first fashion [27]. The SEtree can
be used as an index to efficiently identify the grouping relations
of nodes. The root node of the tree is initially an empty set. Each
topic node is set as a child node of the root node. Then, a check
is made to see if a tree node (denoted as current node set) and
one of the right-side sibling nodes (denoted as probed node set)
can be merged. This operation minimizes repetition in node sets.
If the two node sets can be merged, then the merged node set is
inserted as a child node of the current node set in the tree. At
most one node can be different between the current node set and
the probed node set as there is a sibling relationship. Therefore,
merging two node sets is equal to adding one additional node into
the current node set. Before the node can be inserted, the function
CHECK GROUPING checks if the node can be grouped with one
of the existing node sets already in the tree index.

In NO OVERLAP GROUPING shown in Algorithm 3, the leaf
nodes of the SETree are sequentially accessed to generate the no-
overlapping groups. If a node is in an existing group, then the node
will be removed from all other groups. By repeating this process,
all no-overlapping topic node groups are generated.

3.2 Selecting Centroid Nodes

Given the social network graphG = (V,E), and a topic node
groupVg ⊆ V , a nodevc ∈ V is selected as the “central” node of
the group based on the closeness centrality metric wherevc may
or may not be a topic node inVg. A central node for a group is
important as it can reach the nodes inVg more quickly than other

Algorithm 3 NO OVERLAP GROUPING()
1: Compute the approximate group size as|Vt|/C Size
2: repeat
3: SetFound← false
4: while not Founddo
5: s← r.leftMostChild()
6: if |s| > ⌈|Vt|/C Size⌉ then
7: r.removeNode(s)
8: else
9: SetFound← true

10: Add s as the first group inS
11: for eachv ∈ groups do
12: r.removeNode({v})
13: until r.hasChildren()==false
14: return The set of groupsS

nodes inV . Therefore, the importance of a central node candidate
can be measured by how close it is to all the topic nodes inVg.

Given a nodevi ∈ V and a topic node groupVg, the average
distance ofvi to Vg is

Davg(vi) =
1

|Vg|

∑

vj∈Vg

distance(vi, vj) (3)

wheredistance(vi, vj) is the minimal hops walking fromvi to
vj on the directed graphG.

Definition 3. Closeness Centrality of Node: The closeness
centrality ofvi ∈ V for a topic node groupVg is defined:

CC(vi) = [

∑
vj∈Vg

distance(vi, vj)

|Vg|
]−1

=
|Vg|∑

vj∈Vg
distance(vi, vj)

(4)

Although the closeness centrality of a node is equivalent to
the all pair shortest path problem, it is not practical to process
large graphs as an exact solution for the problem costsΘ(|V |3).
Different from the work in [22], our goal is to select a node close
to a given group of topic nodes and the maximal distance of any
two nodes in the group is limited to2L. Therefore, many nodes
in V can be pruned from the calculation. To efficiently find the
central node for a group of topic nodes, a heuristic approachis
proposed that first identifies a few central candidates without using
Equation 4, and then find the best one by computing the centrality
of the subset of candidates.

Algorithm 4 SELECT CENTRAL(G,Vg)

1: Initialize an array, denoted asVoteCount
2: for each topic nodevi in Vg do
3: Get the node setVvi,L reachingvi in L hops // Use indexed

IL[vi] in Algorithm 6
4: for for each nodevx ∈ Vvi,L do
5: VoteCount[vx] += 1
6: SORT(VoteCount)
7: CandidateSet← get the top nodes fromVoteCountwhere the

value is equal to MAX(VoteCount)
8: Setbest← ∅

9: Setc← 0
10: for each candidatevc ∈ CandidateSetdo
11: Cvc ← CENTRALITY COMPUTATION(vc, Vg, G)
12: if Cvc > c then
13: best← vc
14: c← Cvc

15: return best

5

The brief procedure of central node selection is presented in
Algorithm 4. From Line 2-Line 5, the common nodes reached
by the topic nodes inVg within L hops are computed, and the
number of votes (usingVoteCount) of topic capable of reaching a
common node is stored. In other words,V oteCount represents
the hitting frequency of a common node. The nodes with the most
votes inVoteCountbecome the candidate set. For each candidate,
we compute the closeness centrality using Equation 4. Function
CENTRALITY COMPUTATION is used to compute the centrality
of a node for a topic node group inG. In Line 10-Line 14, the
best central node is determined by identifying each possible node
in the selected candidate set, and stored asbest, The best central
node may change through the following optimizations: (1) The
candidate set is further reduced by repeating Line 2-Line 5 with
smallerL; (2) The identified central node from the candidate set
can be further adjusted by probing the nearest neighbor nodes
until the new centroid cannot be increased. Further enhancements
to select the best centroid are beyond the scope of this paper.

3.3 RCL-A Algorithm and Limitations of RCL-A

TheRCL-A algorithm is presented in Algorithm 5, which includes
an offline stage to pre-compute representative nodes for topics,
and the online PIT-Search based on the pre-selected representative
nodes and query-related topics. This offline process is independent
of online queries issued by users. The space cost is dominated by
O(argmax{|Vt|

2}) wheret is any topic in the maintained topic
space, and|Vt| is the number of nodes containing the topict in
the social networkG.

Algorithm 5 RCL-A
1: // Offline pre-processing
2: Generate topic node groupsS using RANDOM CLUSTER() in

Algorithm 1
3: for each groupg ∈ S do
4: Generate the central node as a representative node using

SELECT CENTRAL() in Algorithm 4
5: Weight the central node based on the number of topic nodes in

the groupg
6: // Online PIT-Search
7: Generate Top-k PIT List using PERSONALIZED SEARCH() in

Algorithm 10
8: return Top-k PIT List

While RCL-A is a useful heuristic to solve the problem, there
are a few limitations to the approach.

• Limiting one central node produced from one group may
increase the influence skew between a central node in a
large group and a central node in a small group. This
could contribute to central nodes over-estimating or under-
estimating the local influence in the social network.

• Limiting each group to one topic node may not be precise
when allocating the influence to the representative nodes.
This is because a topic may be have different representa-
tives with different probabilities.

• RCL-A is based on a time-homogeneous approach to
clustering. It may not be sufficient to only consider the
“important” paths when determining the centroids for the
given topic nodes. This is because some paths to be visited
frequently will play important roles when evaluating the
centrality of nodes.

• Computing a central node withRCL-A is expensive, and
the number of generated groups may be very large.

4 APPROXIMATE L-LENGTH RANDOM WALK

(LRW-A)
To address the limitations ofRCL-A in Section 3, we now present
a novel approach to select representative nodes for topics based
on the technique of anL−length random walk [17]. First, we
take R samples ofL-length random walks for each node. The
pre-computed values can then be used to reduce the cost of
generating representative node sets for any topic in the social
network. Finally, the local influence of topic nodes can be migrated
to the representative nodes using an absorbing random walks.

4.1 LRW-A Index

To index the random walk samples,R inverted lists are con-
structed, each of which containn sublists. The sample sizeR
can be bounded by applying the Hoedding inequality [13], which
balances the tradeoff between the sample size and the accuracy of
estimation using sampled data. For each nodeu, a sublist contains
theL-length random walks originating from nodeu. In addition,
a time-variant visiting frequency indexH[L][n] is maintained to
track the maximum frequency required to reinforce the PageRank
ranking score in Section 4.2. The visiting frequency of a node with
regards to parameterL measures the frequency of the node to be
visited in theL iterations. Here, we simulate the time-variant states
using a number of iterations. The resulting visiting frequencies are
used to compute representative nodes when performing a vertex-
reinforced random walk [24].

Algorithm 6 depicts how to construct the index when perform-
ing a sample-based random walk overG. The R inverted lists,
denoted byI[R][n], are organized as a two dimensional array
whereI[i][w] indexes thei-th L-length random walk starting at
nodew. HereH[L][n] is used to maintain the time-variant visiting
frequency of each node in the time period[1, L], i.e., Iteration-1 to
Iteration-L. First, the algorithm initializes the arraysI[R][n] and
H[L][n]. Then, for each nodew in V , the algorithm performsR
L-length random walks starting with nodew. For eachL-length
random walk, the path is chosen by randomly selecting a neighbor
of the nodeu (u=w in the first iteration), and iteratively replacing
the nodeu with a selected neighborv. To avoid repeating nodes
in the selected path, avisited[v] array is used to track the status
of a nodev. At the same time, the maximal visiting frequency for
each node is selected for a given iteration, and maintained in H .
In addition,IL[n] is used to index all the nodes that can reach to
noden within L hops.

4.2 Effective Representative Node Selection

Given a setVt of nodes related to topict in G, the task in
this subsection is to select a set of nodes that will become the
representative nodes for the node setV . The selected set of
nodes should be a near-optimal node set, and be as close toVt

as possible. To do so, a novel personalization model similarto
PageRank is developed to rank nodes based on centrality (prestige)
and diversity.

Building on the PageRank strategy [23] and the idea of a
vertex-reinforced random walk [20, 24], a diversified PageRank
ranking function can be formalized as follows:

PT+1(v) = (1−λ)P ∗(v)+λ
∑

(u,v)∈E

P0(u, v)×NT (v)

DT (u)
PT (u)

(5)
where

6

Algorithm 6 INVERTTVH IT INDEX(G,L,R)

input: A graphG = (V,E), two parametersL andR
output: An inverted indexI[R][n], a time-variant visiting frequency
indexH[L][n], and reachable indexIL[n]

1: Initialize I[R][n]← ∅

2: Initialize H[L][n]← ∅

3: Initialize IL[n]← ∅

4: for each nodew ∈ V do
5: for i← 1 to R do
6: Initialize visited[n]← 0
7: u← w
8: visited[u]← 1/R
9: for j ← 1 to L do

10: v ← Randomly selected neighbor ofu
11: if visited[v] = 0 then
12: visited[v]← 1/R
13: I[i][w]← v
14: IL[v] ← w // Index IL[v] for Algorithms 1 and

Algorithm 4
15: else
16: visited[v]← visited[v] + 1/R
17: if H[j][v] < visited[v] then
18: H[j][v]← visited[v]
19: u← v
20: return I[R][n], H[L][n], andIL[n]

• P ∗(v) is a random jump probability representing the prior
preference of visiting a topic nodev given topict. Assume
there arem nodes relating tot. In this work,P ∗(v) is
set to1/m if v is a topic node related tot, otherwise,
P ∗(v) = 0. For different topics,P ∗(v) can vary.

• P0(u, v) is the “organic” transition probability prior to any
reinforcement. In this work,P0(u, v) derived from the
topic-related transition probability of an edge. Note that
P0(u, v) is only sensitive to the overall topics of social
users, as discussed in Section 2.

• NT (v) is the time-variant visiting frequency of nodev in
the random walks at Iteration (or time)T .

• DT (u) =
∑

(u,vi)∈E P0(u, vi) × NT (vi) is used to
normalize the reinforced PageRank score in Equation 5.

The key idea of selecting representative nodes is to rank the
nodes based on time-variant hitting times and closeness to the
topic nodesVt. Since the influence of a node is limited by distance,
i.e.,L-hops, the PageRank-style algorithm need only be ran using
L-iterations. By doing so, each node weight is based on the nodes
within anL-length radius.

The detailed procedure of selecting the representative node
set is shown in Algorithm 7. First, all the nodes for topict are
retrieved,denoted asVt. Two arrays,PR[n] for tracking the up-
dated PageRank score of each node, andPStar[n] for maintaining
the personalized preference of visiting a node given topict, are
initialized. Line 4-Line 10 set the initial values ofPStar[n] and
PR[n]. Each element inPR[n] is an object consisting of three
values: (1) the node idv; (2) The PageRank scorev.previous
for the previous moment; and (3) The PageRank scorev.current
for the current moment. The remainder of the loop calculatesthe
diversified PageRank score for each node inL-length iterations.
In Line 14-Line 18, the normalized, reinforced PageRank score is
calculated for the nodev by accessing every inlink neighbor node,
and the indexed time-variant hitting timeH[i][v] for nodev at
the momenti. Here,PR[v].previousis the time-variant PageRank
score of the nodev at the momenti − 1. Line 19 is used to

Algorithm 7 REPNODES(G, t, λ, µ,H[L][n])

input: A graphG = (V,E), a topict, a parameterλ, a percentage
valueµ ∈ (0, 1), and a pre-computed time-variant visiting frequency
indexH[L][n]
output: The selected representative nodesVr ,t

1: Topic node setVt from V for t retrieved from an inverted node
index

2: Initialize PR[n]← ∅

3: Initialize PStar[n]← ∅

4: for each nodev ∈ V do
5: if v ∈ Vt then
6: PStar(v)← 1

|Vt|

7: else
8: PStar(v)← 0
9: PR[v].previous← 1

10: PR[v].current← ∅

11: for i← 1 to L do
12: for each nodev ∈ V do
13: Get inlink neighbor node setVin of v in G
14: for each inlink nodeu ∈ Vin do
15: Get outlink neighbor node setVout of u in G
16: for each outlink nodew ∈ Vout do
17: DTValue+= P0(u,w)×H[i][w]
18: PNTValue+= P0(u,v)×H[i][v]

DTValue × PR[v].previous
19: PR[v].current← (1− λ)× PStar(v) + λ× PNTValue
20: for each nodev ∈ PRdo
21: PR[v].previous← PR[v].current
22: PR[v].current← ∅

23: Copyv → v.previouspairs inPR to a new arraytempPR
24: SORT(tempPR)
25: cutPosition← µ× |Vt|
26: Vr ,t ← GETSUBARRAY(tempPR, cutPosition)
27: return Vr ,t

compute the adapted PageRank score of the nodev at momenti
using Equation 5. After all the nodes are processed, the previous
PageRank score of a node is replaced by the current score as
shown in Line 20-Line 22. AfterL iterations, the nodes are highly
scored if they have large hitting times, and are close to the topic
nodes inVt. Finally, the nodes are sorted based on the diversified
PageRank score, and the top-ranked nodes are returned as the
representative nodes fort as shown in Line 23-Line 27.

4.3 Local Influence Migration of Topic Nodes

Now we propose a novel method to effectively migrate the local
influence of topic nodes to the corresponding topic-relatedrep-
resentative nodes without running the actual clustering algorithm
shown in Section 3. The key idea of influence migration is as
follows: Given a topic node, a number of random walk paths are
generated starting from the topic node. For each random path,
a check is made to see if it contains any representative nodes.
If so, the first representative node encountered is treated as an
absorbingstate for an Absorbing Markov Chain [10]. Once an
absorbing state is entered, it cannot be left. After all of the random
paths for a topic node are traversed, a set of representativenodes
that are locally close to the topic node based on all of randomly
selected paths is determined. The procedure is then repeated
for each representative node, and all topic nodes encountered
first and absorbed are found. Here, a topic node in an absorbed
state represents means it will be absorbed by the starting node
for the path. By repeatedly determining forward and backward
absorption, the likelihood of discovering the closest representative
nodes for each topic node is maximized. Then, the local influence

7

weight for each topic node is migrated to the local representative
nodes based on a probability distribution of closeness between
each topic - representative node pair.

To compute the closeness probability distribution for topic -
representative node pairs, an association matrixM(i, j) is used.
Each entry represents the distance between the current topic node
i and the current representative nodej. The simplest distance
function being[D(i, j)+1]−1. The shorter the distance, the higher
the closeness between the topic node and the representativenode.
As such, the representativej will absorb more local influence
from the topici. After all of the random paths for topic nodes
and representative nodes have been processed, the matrixM
is normalized asM ′ whereM ′(i, j) = M(i,j)

∑#Rep
j=1 M(i,j)

. Assume

there are#Rep representative nodes andm topic nodes fort.
Based on the normalized matrix, the aggregated influence of each
representativej is calculated as1

m

∑m
i=1 M

′(i, j) where each
topic node is assumed to have a uniform local influence weight1

m
.

It is easy to see that a topic node can be represented by different
representative nodes with different probabilities.

Algorithm 8 INFLUENCEM IGRATION(t, I, Vr,t)

input: An inverted indexI[R][n], a representative node setVr,t for a
topic t
output: A weighted representative node setVr,t : node→ weight

1: Topic node setVt from V for t retrieved from an inverted node
index

2: Initialize |Vt| × |Vr,t| adjacency matrixM ← ∅

3: for each topic nodevi ∈ Vt do
4: GetR random paths fromI[R][vi]
5: for each pathp in I[R][vi] do
6: if p contains a representative nodevr ∈ Vr,t and

M(vi, vr) <
1

D(vi,vr,p)+1
then

7: M(vi, vr)←
1

D(vi,vr,p)+1
;

8: for each representative nodevr ∈ Vr,t do
9: GetR random paths fromI[R][vr]

10: for each pathp in I[R][vr] do
11: if p contains a topic nodevt ∈ Vt and M(vt, vr) <

1
D(vt,vr,p)+1

then
12: M(vt, vr)←

1
D(vt,vr,p)+1

13: Initialize |Vt| × |Vr,t| adjacency matrixM ′ ← ∅

14: for i← 1 to |Vt| do
15: for j ← 1 to |Vr,t| do
16: row weight+= M [i][j]
17: for j ← 1 to |Vr,t| do
18: M ′[i][j]←M [i][j]/row weight
19: for j ← 1 to |Vr,t| do
20: for i← 1 to |Vt| do
21: column weight+= M ′[i][j]
22: UpdateVr,t by vj → column weight∗ 1

|Vt|

23: return UpdatedVr,t

The procedure for migrating local influence of topic nodes
to representative nodes is detailed in Algorithm 8. First, the
topic node setVt is retrieved from the topic-based inverted node
index. The nodes inVt are the same as originally generated in
Algorithm 7, and can be reused in an implementation. Then,
an adjacency matrixM is used to track absorbing relationships
between representative nodes and topic nodes. For sparse graphs,
an adjacency list could also be used here. In Line 3-Line 7, the
absorbing representative nodes are identified for each topic node
based on theR random walks. In Line 8-Line 12, the topic nodes
are identified that can be absorbed by a representative node based
on the randomly selectedR paths of the given representative node.

Line 13-Line 18 are normalization of the closeness probability
distribution for each topic node relative to its representative nodes.
After all the sampled paths are processed, the aggregated score
of each representative node is calculated as the overall influence
migrated from the locally related topic nodes as shown in Line19-
Line 22. Lastly, the updated and weighted representative node
set Vr,t is returned as the sampling node set for evaluating the
influence of topict for each user.

4.4 LRW-A Algorithm

Algorithm 9 LRW-A
1: // Offline pre-processing
2: Generate topic-based representative nodesVr,t using

REPNODES() in Algorithm 7
3: Weight the selected representative nodes using

INFLUENCEM IGRATION() in Algorithm 8
4: // Online PIT-Search
5: Generate Top-k PIT List using PERSONALIZED SEARCH() in

Algorithm 10
6: return Top-k PIT List

The LRW-A algorithm is presented in Algorithm 9, and
consists of two stages: The first is an offline stage to pre-compute
representative nodes for topics, and assign the weight to each
representative node using the absorbing strategy; The second is the
online PIT-Search based on the pre-selected representative nodes
and query-related topics. As the offline pre-processing is updated
after a period of time when the social network and topics have
changed, it is independent of online queries. The space cost is
dominated byO(|R|n) where|R| is the number of inverted lists,
andn is the total number of nodes in the social networkG.

5 PERSONALIZED INFLUENCE OF TOPICS

In this section, a materialization algorithm is presented that
efficiently computes the personalized top-k topics for each user
by evaluating the influence of the representative nodes. To do
this, two significant problems must be overcome: (1) Every node
must be materialized; and (2) An efficient top-k algorithm that
is topic-specific is needed. These two problems are addressed in
Subsection 5.1 and Subsection 5.2, respectively.

5.1 Personalized Influence Propagation Index

Different from the general problem of finding the shortest paths
in a graph, personalized search of topics only requires nodes
“nearby” a given social user node in the social graph. Here,
“nearby” means a node that can reach a given social user with a
transition probability above a fixed threshold. Since the transition
probability of the propagation path decreases as the path distance
increases, only the nearby nodes are selected in personalized
search. Therefore, shortest paths for all node pairs in the graph are
not necessary, and only a small subset of nodes for each starting
position must be materialized.

The key idea of the materialization is as follows. For each
nodev in G, v is initially selected as the root of a backward-
based tree, and a reverse breadth-first-search (BFS) is performed.
For each nodeu linked to v, u is inserted as a child ofv if the
transition probability of the current path (branch)u →֒ v is above
θ. Then, the nodesu′ linking to the nodesu are probed. Ifu′ does
not appear in the pathu →֒ v, and the transition probability of

8

u′ →֒ u →֒ v is greater thanθ, thenu′ is inserted as a child of
u in the tree. If the transition probability ofu′ →֒ u →֒ v is less
thanθ, then the expansion of the branch is terminated. Note that a
node is allowed to appear on different paths (branches) in the tree.
Until all possible nodes are fully probed, the tree maintains all of
the nodes where each node should have at least one propagation
path reachingv, and the propagation probability is greater thanθ.
For any node in the tree, if it has additional incoming nodes but
these incoming nodes can not be included due to a low transition
probability, then the node will be marked as a potential nodemay
be expanded in an online search.

Finally, a hash map is created for the nodev. Because different
occurrences of a nodeu in the tree representu can influencev
through different paths, the transition probabilities of these paths
are aggregated as the propagation value ofu to v. We insertu and
the propagation value into a lookup table indexed byv. All nodes
in the tree are processed in a similar manner. The hash map is the
materialized index for servicing personalized search for astarting
nodev. The set of nodes in the hash map is denoted asΓ(v).

1
t1

2
t3

3
t1

4
t3

5
t1

6
t3

7
t2

8
 9
t2

10
 t2

11
 12
 t1

0.3

0.2

0.1

0.5

0.2

0.5

0.3

0.1
 0.4

0.3
 0.6

0.3

0.5
 0.8

0.7

8

5
7

4
 4
 9
 1

11

12

0.8

0.7

0.2

0.3

0.6
0.5
0.3

0.4

Threshold = 0.05

For node 8, we maintain a
 hashmap
:

nodes

transition

probability

1
 0.06

4
 0.27

5
 0.30

7
 0.40

9
 0.18

11*
 0.10

12
 0.13

Fig. 3. Personalized Influence Propagation Index Construction

Consider the example in Figure 3 with12 nodes and a
transition probability on each directed edge. For each graph node,
the nearby nodes able to reach a given graph node for a single path
traversal when the transition probability is aboveθ is recorded.
Assume thatθ = 0.05, and the starting node is Node8. Based
on a reverse breadth-first-search from Node 8, the tree in the
second figure in Figure 3 would be produced. By aggregating
the influence of different paths for each node, the lookup table
in the table in Figure 3 can be generated. Note that the transition
probability of each node does not consider the local weight.To
compute the final influence for a given node for a topic, the
transition probability and the local weight are multiplied. Recall
that the local weight can be computed using the methods in
Section 3 and Section 4. In this example, only Node11 will
be marked as a potential node to be expanded when refining the
top-k personalized influential topics online. This is because Node
4 has no incoming nodes. Although Nodes1, 5, 7, 9, and 12
have incoming nodes, the nodes are already included in the index.
By doing this, unnecessary expansion is avoided, and the overall
computation is more efficient.

5.2 Computing Top- k Personalized Influential Topics

Given a set of topicsT related to a queryq issued byv, the key
idea of a top-k PIT-Search algorithm is to first select the top-k
topic candidates by probing the materialized node index ofv, and
the representative node sets ofT . After all of the representative
nodes appearing nearv have been processed completely, some
topics can be pruned fromT if the topic cannot be in the top-
k topic candidates based on the upper bound of the aggregate
influence score. If there are still possible topic candidates that may
make it into the top-k topic list, then additional neighbor nodes of
v must be probed until the top-k topic candidates can no longer
be affected.

Algorithm 10 PERSONALIZED SEARCH(q, v)

input: A keyword queryq issued byv, IndexΓ, Topic SpaceT , and
Topic-aware representative node setsS
output: Top-k PIT List T k

1: Get query-related topicsTq from topic spaceT
2: Get representative node setsSq ← {S1, ..., S|Tq|}
3: T ′ ← Tq

4: for each topicti ∈ Tq do
5: vInner← Si ∩ Γ(v);
6: // Si is the representative node set of topicti andΓ(v) is the

indexed nearby nodes ofv, obtained fromv.hashmap
7: for each nodeu ∈ vInner do
8: influence+= v.hashmap(u) × Si[u]
9: // Si[u] is the local weight ofu representing the local topic

nodes to be calculated by methods in Section 3 and Section 4
10: Wr[ti]← 1− Si[u]
11: heap[ti]← influence
12: UPDATE(T k, heap)
13: Si ← Si \ vInner
14: Γ∗(v)← {u∗ ∈ Γ(v)}
15: // Γ∗(v) ⊆ Γ(v) is the subset of marked nodes with potential

capacity to be expanded
16: maxEP← max{v.hashmap(u∗)|u∗ ∈ Γ∗(v)}
17: for each topicti ∈ Tq do
18: if Si = ∅ ∨min(T k) ≥Wr[ti]×maxEP+ heap[ti] then
19: T ′ ← T ′ \ ti
20: RemoveSt′ from Sq

21: if T ′ \ T k 6= ∅ then
22: EXPAND(Γ∗(v), T ′, Sq, T

k,Wr, heap,maxEP)
23: return Top-k PIT List T k

The procedure of finding the top-k topics is presented in Al-
gorithm 10. At the beginning, theq-related topicsT are retrieved
and the materialized representative node setsS = {S1, ..., S|T |}.
Before the topics are processed, a copy topic setT ′ is created
to track the remaining unprocessed topics. In Line 4-Line 13,for
each topicti ∈ T , the influence ofti to v is computed if there
are representative nodes ofti occurring nearby (stored inΓ(v)),
and the value is stored asvInner ← Si ∩ Γ(v) in Line 5. For
each representative nodeu appearing inΓ(v), the influence to
v is calculated by multiplying the local weightSi[u] for ti and
the transition probability propagation tov. A heap maintains the
current influence of topics onv.

After each topicti has been processed, the visited nodes
(vInner) are removed from the representative node setSi. This
is because all influence starting fromu ∈ vInner to v is already
counted during the construction of node influence propagation
in Subsection 5.1. The remaining local weight of each topic is
recorded in Line 10.

Line 14-Line16 are used to find the marked nodes that may
be expanded and the upper bound of the transition probability

9

of the expanded nodes. Then, the topics that cannot be in the
top-k are pruned fromT ′ based on the intermediate results as
shown in Line 4-Line 13. A topicti can definitely be pruned
under two conditions: (1) No remaining representative nodes are
in Si; (2) The minimal valuemin(T k) is larger than or equal to
the influence upper bound ofti, where the upper bound value
of ti is the aggregate of the currently computed influence in
heap[ti], and the maximum possible influence of the remaining
representative nodes. This can be estimated byWr[ti] × the
maximum transition probability propagation of the marked nodes
with remaining expansion capacity in the index ofv.

Finally, the algorithm terminates whenT ′ = T k. Otherwise,
function EXPAND is called to explore nodes further away fromv in
order to make sure that any remaining topics are considered.The
function EXPAND is shown in Algorithm 11, and shares several
key variables with Algorithm 10. The main difference is thatthe
termination of the algorithm must be checked when each topic
in Line 2-Line 14 is processed. The function UPDATE is easy
to implement, and keeps the current top-k topic candidates and
influence scores inT k according to the current heap status.

Algorithm 11 EXPAND(Γ∗(v), T ′, Sq, T
k,Wr, heap,maxEP)

1: for each nodeu ∈ Γ∗(v) do
2: for each topict′ ∈ T ′ do
3: uInner← St′ ∩ Γ(u)
4: for each nodex ∈ uInner do
5: influence+= u.hashmap(x)× St′ [x]
6: Wr[t

′]← 1− St′ [x]
7: heap[t′] += influence
8: St′ ← St′ \ uInner
9: UPDATE(T k, heap)

10: if St′ = ∅ ∨min(T k) ≥Wr[t
′]×maxEP+ heap[t′] then

11: T ′ ← T ′ \ ti
12: RemoveSt′ from Sq;
13: if T ′ \ T k = ∅ then
14: break
15: Γ∗

new← Γ∗
new∪ Γ∗(u);

16: RecordmaxEPin Γ∗
new

17: if T ′ \ T k 6= ∅ then
18: EXPAND(Γ∗

new, T
′, Sq, T

k,Wr, heap,maxEP)

Using an example social network and index in Figure 3,
the procedure of finding personalized influential topics is traced.
Assume that Node8 issues a query related to the three topics
t1, t2, andt3, andk is set as1. The setsTq = {t1, t2, t3} and
Sq = {S1 = {1, 3, 5, 12}, S2 = {7, 9, 10}, S3 = {2, 4, 6}}
are instantiated. Here,Γ(8) = {1, 4, 5, 7, 9, 11*, 12}. For
t1, vInner = S1 ∩ Γ(8) = {1, 5, 12}. For each node in the
node setvInner, the influence to Node8 is calculated. If each
node inS1 is assumed to have0.25 as the local weight, then
the aggregated influence of{1, 5, 12} relative to Node8 is
8.hashmap(1)×0.25+8.hashmap(5)×0.25+8.hashmap(12)×
0.25 = 0.055. The remaining local weight oft1 is 0.25.
Similarly, the influence oft2 relative to Node8 is computed
as 8.hashmap(7) × 0.33 + 8.hashmap(9) × 0.33 = 0.19. The
remaining local weight oft2 is 0.33. For t3, the influence to
Node 8 is 8.hashmap(4) × 0.33 = 0.09. The remaining local
weight of t3 is 0.67. At this stage, the intermediate results are
heap= {t1 = 0.055; t2 = 0.19; t3 = 0.09; }, T k=1 = {t2},
S1 = {3}, S2 = {10}, S3 = {2, 6}, Γ∗ = {11}, and
maxEP = 0.10. Based on the intermediate results, the topics
that are not able to be the top-1 topic are pruned. SinceS1 and
S3 are not empty, their influence upper bounds are calculated

as Wr[ti] × maxEP+ heap[ti]. For t1, the upper bound is
Wr[t1] × maxEP+ heap[t1] = 0.25 × 0.1 + 0.055 = 0.08.
Because the upper bound (0.08) of t1 is less than the current
influence value oft2, t1 can be pruned from further computations.
Similarly, t3 can be pruned safely since the upper bound is0.157.
Therefore,t2 is returned as the top-1 personalized influential topic
for node8.

6 EXPERIMENTS

6.1 Experimental Setup

All algorithms are implemented in Java and ran on a 3.0 GHz Intel
Pentium 4 machine with3GB RAM running Windows 7.

Twitter Dataset: We use the large dataset (data3m including 3
million social users) to evaluate the performance of PIT-search,
and show the average running time and space cost of building
indexes. In this work, we use the dataset originally described
by [16] which contains284 million “following” relationships,
3 million user profiles, and50 million tweets. The dataset was
collected in May2011 by the FORWARD research group at
University of Illinois at Urbana-Champaign.

In addition, we generate synthetic datasets from the larger
dataset. Using a similar node degree distribution, three synthetic
datasets are produced from the nodes with degree range51-
100, 101-500, and500-1000, respectively. The three datasets are
denoted as data350k for 350k nodes, data1.2m for 1.2m nodes,
and data3m including3m nodes. We also generate a small dataset
(data2k) with 2000 social users selected from the original dataset
using random selection. This is primarily used to compare against
the ground-truth method. To ensure each generated dataset is a
connected graph, a few synthetic edges among the close nodes
across disconnected components are added. The summary of these
datasets is shown in Figure 4.

Dateset Size Node Degree Type
data3m 3 million 0-695,509 Real
data1.2m 1.2 million 101-500 Synthetic
data350k 350,000 51-100 Synthetic
data2k 2,000 1-500 Synthetic

Fig. 4. Summary of Datasets Used

Topic Generation: In this work, we use a collaborative method
to generate a set of topics for each Twitter user. Given a Twitter
user, we first treat the posted messages as a document, and apply
a simple LDA (Latent Dirichlet Allocation) topic model to the
document to generate a bag of terms (normally16 terms) to be
topic seeds of this user. Then, we refine the topic seeds for each
user using53,388 tags in the benchmark dataset released at the
2nd International Workshop on Information Heterogeneity and
Fusion in Recommender Systems (HetRec 2011). Each tag was
frequently bookmarked by1,867 web search users. By doing this,
we have a reasonable set of topic seeds for each Twitter user.By
repeating the above process on each Twitter user, we can produce
a large number of meaningful topics. For example, the total size of
the generated topic space is4.8 million where each user has about
200 topics extracted from450 tweets in the large Twitter data.

Baselines: In order to evaluate the effectiveness and efficiency of
the new PIT-search methods (RCL-A andLRW-A), we use three
different baselines.

• BaseMatrix is used to produce ground-truth results over
a small Twitter dataset. The idea is similar to [19]. For

10

eachq-related topic, the influence is propagated to the
social users through a number of matrix multiplication
iterations (set to6 in this work). As such, the influence
of the topic on the query user can be aggregated at the
end of the matrix multiplication. The propagation process
is repeated for eachq-related topic. After that, the top-
k q-related topics can be determined by comparing the
aggregated values of different topics on the query user.

• BaseDijkstra first computes the shortest path from each
topic node to the query user using Dijkstra’s algorithm [4],
and then replaces a sub-path in the shortest path with an
alternative path that can connect the two end points of the
sub-path. By repeating the replacement operation, we can
generate a number of distinct paths from the topic node to
the query user node.

• BasePropagation is a heuristic method, which is used
to process the large Twitter dataset becauseBaseMatrix
is too space inefficient on the larger dataset, requiring
120GB of RAM, and BaseDijkstra is too computation-
ally expensive. The basic idea ofBasePropagation is to
calculate the propagation influence of each topic node
for a given user using only the personalized influence
propagation index described in Section 5.1.

6.2 PIT-Search Efficiency

To test PIT-Search performance, we select100 tags to represent
a user’s keyword queries. Each tag would produce500+ topics
for the Twitter dataset in the topic generation process. Then, we
randomly select an additional49 users, but keep the100 sampled
keyword queries unchanged. The average over all of the runs are
used to fairly assess the PIT-Search performance.

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

10
 20
 50
 100

Top k Size

C
om

pl
et

io
n

T
im

e
(s

)

BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 5. Time Cost of PIT-Search using Data2k

Figure 5 shows the time cost for the methodsBaseMatrix,
BaseDijkstra, BasePropagation, RCL-A, andLRW-A over the
small Twitter dataset when thek = 10, 20, 50, and 100. The
performance gap between each approach is quite evident. For
instance,BaseMatrix and BaseDijkstra take around5 hours
and1 minute, respectively. This is becauseBaseMatrix performs
many matrix multiplications in a sparse array when computing
the influence for all the possible paths from topic nodes to the
user node.BaseDijkstra spends the majority of the processing
time computing the shortest paths. Here, the length of iterations
is set as6 in BaseMatrix. Obviously, the high-latency is not
acceptable in an online search. However,BasePropagation only
requires100 ms to return the top-k personalized influential topics.
This is becauseBasePropagation uses a materialized index to
obtain the influence from a topic node to a query user with
no further on-the-fly path computations.RCL-A and LRW-A
are the fastest approaches, requiring only20 ms to determine

the top-k. In addition, our experiments also show that all these
methods consume reasonable memory space when processing the
small dataset, i.e.,BaseMatrix required up to129MB, and the
other methods used up to93MB. In further timing experiments,
BaseMatrix is omitted since the performance is so poor. In this
small dataset, varyingk does not change the time cost for any
of the methods. This is becauseBasePropagation, RCL-A and
LRW-A have to access most of the nodes to identify the top-k
results.BaseMatrix must perform matrix multiplications in allL
iterations. The time cost ofBaseDijkstra is dominated by the cost
of computing the shortest paths. Therefore, the running timeis
insensitive tok in the small dataset.

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

100
 200
 300
 500

Top k Size

C
om

pl
et

io
n

T
im

e
(s

)

BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 6. Time Cost of PIT-Search using Data3m

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1000
 2000
 4000
 6000

Representative Nodes

C
om

pl
et

io
n

T
im

e
(s

)

BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 7. Time Cost of PIT-Search for the Top-100 Topics using a different
number of Representative Nodes and the Data3m collection.

For a selected query, the large Twitter dataset has around
3000 q-related topics on average, and eachq-related topic has
20,000 topic nodes. So, we maintain1000 representative nodes for
each topic in the materialized index. Figure 6 shows the average
processing time of the proposed methods whenk = 100, 200,
300, and500. BaseDijkstra requires around25 hours to complete
the task,BasePropagation needs6.6 minutes, andRLC-A /
LRW-A use only230 ms. From Figure 6, we observe that the
average query time ofRLC-A andLRW-A grow very slowly ask
increases. The low-latency is still promising for online PIT-search.
From the experimental result, the algorithms are insensitive to
k because personalized search can prune the low quality topics
and filter the expanded nodes at the same time based on the
intermediate results.

Figure 7 compares the completion time when we vary the
materialized sizes of representative nodes for each topic.Since
BaseDijkstra and BasePropagation have to evaluate the influ-
ence of each topic node relative to the query user, they are not
affected by the change of representative node set size. They have
the same time cost as that in Figure 6. However, the performance
of bothRCL-A andLRW-A improve when the number of repre-
sentative nodes varies. For instance, a PIT-search can be stopped in
70 ms if we materialize1000 representative nodes for each topic.

11

But if we maintain6000 representative nodes for each topic, then
both RCL-A and LRW-A methods require600 ms before the
PIT-search terminates.

6.3 Scalability of PIT-Search

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

2k
 350k
 1.2m
 3m

Dataset Size

C
om

pl
et

io
n

T
im

e
(s

)

BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 8. Scalability of PIT-Search for the Top-100 Topics over all datasets
using 1000 sampled representative nodes for each user.

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

2k
 350k
 1.2m
 3m

Dataset Size

C
om

pl
et

io
n

T
im

e
(s

)

BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 9. Scalability of PIT-Search for the Top-100 Topics over all datasets
using 2000 sampled representative nodes for each user.

In order to evaluate the scalability of PIT-Search, we assessed
the average time cost for each method over all4 datasets. Figure 8
shows the results whenk = 100 and the number of selected
representative nodes is1000. Figure 9 shows what happens when
we change the number of representative nodes to2000. From
the two figures, we can see thatRCL-A and LRW-A are not
sensitive to the change of dataset size, while the other approaches
become even more inefficient as the collection size grows. From
the comparison of this two figures, we can observe that change
from 1000 representative nodes to2000 representative nodes does
not incur a noticeable performance decrease. The comparison also
shows that the efficiency of PIT-Search over data3m is better
than that of data1.2m. This is because the average node degree
of data1.2m is much larger than in data3m. So, the expansion
operations incurred by higher edge degrees in the graph can result
in a measurable performance degradation.

6.4 PIT-Search Effectiveness

To measure the effectiveness of the PIT-search approximation
methods, we treat the generated results fromBaseMatrix as the
ground-truth for small Twitter dataset since it exhaustively pro-
cesses all paths.BaseMatrix selects the personalized influential
topics based on the exact influence computation for topics. For
simplicity, we consider only Precision in Figure 10. By comparing
the topics returned withBaseMatrix, we can see thatBaseDijk-
stra has the lowest precision, followed byRCL-A. The precision
is around0.7. From Figure 10, we can see thatBasePropagation
and LRW-A have similar precision – around0.85 when thek
is between20–100. BasePropagation can achieve nearly same

0

0.2

0.4

0.6

0.8

1

10
 20
 50
 100

Top k Size

P
re

ci
si

on

 BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 10. Effectiveness of PIT-Search on Data2k

result set asBaseMatrix when thek = 10. This is mainly because
BasePropagation is also an exact-computation method using a
personalized influence index to improve efficiency. In contrast to
BaseMatrix, BasePropagation may mis-appropriate topic node
influence when probing expanded topic nodes.

0

0.2

0.4

0.6

0.8

1

100
 200
 300
 500

Top k Size

P

re
ci

si
on

 BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 11. Effectiveness of PIT-Search on Data3m

0

0.2

0.4

0.6

0.8

1

1000
 2000
 4000
 6000

Representative Nodes

P
re

ci
si

on

 BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 12. Effectiveness of varying the number of Representative Nodes
on Data3m and k = 100

Since it is not feasible to useBaseMatrix on the larger dataset,
we compare the approximation algorithms toBasePropagation
in Figure 11 instead. Figure 12 shows the impact of varying
the number of representative nodes.BaseDijkstra has the lowest
precision, followed byRCL-A as seen previously.LRW-A can
achieve the best precision – above0.8. The precision ofRCL-A
can be further improved by increasing the size of the materialized
representative node set. Increasing to0.82 for 6000 representative
nodes in Figure 12. However,LRW-A increased precision comes
at a performance cost as discussed previously. This observation
corroborates our claim that the effectiveness ofLRW-A at select-
ing representative nodes is better thanRCL-A. If we select enough
quality representative nodes for a topic withLRW-A, then simply
increasing the number of representative nodes cannot bringmuch
more benefit toLRW-A when assessing a topic’s influence.

12

0

0.2

0.4

0.6

0.8

1

2k
 350k
 1.2m
 3m

Dataset Size

S
pa

ce
 C

os
t (

G
B

)

BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 13. Space cost when searching with k = 100 on all datasets with
1000 sampled representative nodes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2k
 350k
 1.2m
 3m

Dataset Size

S
pa

ce
 C

os
t (

G
B

)

BaseMatrix

BaseDijkstra

BasePropagation

RCL-A

LRW-A

Fig. 14. Space cost when searching with k = 100 over all datasets with
2000 sampled representative nodes.

6.5 PIT-Search Space Cost

In Figure 13 and Figure 14, we demonstrate the space cost when
searching for the top100 influential topics over all datasets. Here,
each topic’s influence for a query user is calculated using1000 or
2000 pre-computed representative nodes. From the experimental
results, we can see thatBaseMatrix consumes significant space.
All other methods have reasonable space usage during a PIT-
Search. In addition, we can find that the space cost ofRCL-A and
LRW-A processing queries over the data3m collection increases
quickly because the dataset contains a large number of query-
related topics. Since there are many possible matches, a large
amount of space is consumed when loading the representative
nodes at the beginning of Algorithm 10. But the space cost
is still less thanBaseDijkstra and BasePropagation because
BaseDijkstra has to maintain many intermediate results when
computing the shortest paths, andBasePropagation needs to
retrieve all topic nodes into the memory at the beginning of each
query evaluation.

6.6 Index Construction

To demonstrate that the materializing cost for the topic-to-
representative node index is reasonable, we report the timeand
space cost when we vary the sample rate ofRCL-A, the sizeR of
L-length random walks inLRW-A, andL for both.

|V ′|
|V |

in RCL-A 1% 5% 10%

Time Cost (s) 450 540 560
Space Cost (GB) 2 2 2

R in LRW-A 100 200 300
Time Cost (s) 14 14 14
Space Cost (GB) 2 3 4

Fig. 15. Effect of Sample Rate on PIT-Search approximation algorithms

Given a topic, Figure 15 provides the average time and space
cost as sample rate varies. For instance, when we sample different

numbers of nodes when grouping the topic nodes, the time of
selecting central nodes inRCL-A does not exhibit any noticeable
change. The main reason is thatRCL-A spends most of the
time on the central node computation, and not on the node pair
grouping determination. Therefore, increasing the sampleratio
does not affect the pre-computation time. In all three cases, the
space cost jumps up to2GB, which is mainly dominated by the
space required to load nodes and theL-length node set. When
compared withRCL-A, LRW-A needs more space asR increases.
However,R is often a reasonably small value (200) in practice.
This is because the average degree is76 in the large Twitter data
graph. The advantage ofLRW-A is that it only takes14 seconds
to identify the representative node set for a topic, and the effect of
R to the running time is negligible. This is because most of the
processing time ofLRW-A is spent on the process of computing
ranking score for every node in the graph in order to select
representative nodes for a topic. Once the representative nodes
are selected, the absorbing procedure can be quickly finished.
Here, we do not include the time cost of constructing theL-length
random walk index (Algorithm 6 discussed in Section 4.1) since
the sampling index only needs to run one time for a dataset for
both algorithms. In our experiments, building theL-length random
walk index required around seven hours and3GB of space when
R = 200. Since it is only ran once, this cost is amortized.

0

100

200

300

400

500

600

4
 6
 8

Parameter L

C
om

pl
et

io
n

T
im

e
(s

)

RCL-A

LRW-A

Fig. 16. Index construction time for Data3m

Figure 16 shows the time required to compute the central nodes
or representative nodes asL varies forRCL-A andLRW-A. As
L increases,RCL-A requires more time to compute the central
nodes. The main reason is that largeL values may lead to large
group sizes. Computing the central node of a large group is much
more expensive than for many small groups because the large
group may bring in many non-topic nodes into the selection phase.
Different from RCL-A, the processing time ofLRW-A changes
much less than inRCL-A. Therefore,LRW-A is the preferred
approach for materializing the topic-to-representative node index.

7 RELATED WORK

A significant amount of prior work exists in the study of influence
diffusion in social networks. For example, Richardson and Domin-
gos [26] and Kempe et al. [11] formally defined the problem of
influence maximization as finding a small subset of nodes in a
social network that can maximize the spread of influence based on
the independent cascade (IC) propagation model. The problem is
further studied by Chen et al. [3] who consider the degree discount
during the seed selection process. Goyal et al. [8] extendedthe
influence maximization problem by deriving influence propagation
with time decay using action-based traces. Zhuang et al. [33]
addressed the problem of maximizing influence diffusion when

13

the social networks are updated frequently. Guo et al. [9] proposed
and studied the problem of personalized influence maximization.
The problem is defined as follows: Given a target user, find a small
subset of nodes which can maximize the influence spread to the
given target user in a social network. However, all the abovework
can neither be applied to select representative users from asocial
network with regards to a topic, nor to PIT-search problem.

Several approaches to personalization in social networks exist.
A re-ranking method was presented by Noll and Meinel [21] based
on user tag profiles which are derived from a user’sdel.icio.us
bookmarks. The tags of each search result on the site are matched
against a user profile. The authors go on to investigate how
accurate user profiles can be generated fromdel.icio.us data.
Similarly, Carmel et al. [2], Vosecky et al. [29], and Qian et al.
[25] developed personalized social search methods based onuser
profiles and topics of interest. By comparing the search results
against the user profiles and topic of interest, the most relevant
results can be retrieved. The limitation of these approaches is
that personalization prefers results matching with a user profile
or query log. However, users are often reluctant to provide private
information as it can be used expose and harvest personal details.
Li et al. [18] is the most recent work to study the problem of
personalized search over social networks. A search returnsa user’s
posts, and not matched topics as in this work. Li et al. used the
shortest distance to simulate the social relevance betweenusers
rather than influence between users as described in this work. The
other semantics of keyword search have been studied [5, 6, 7,15].
Different from all the above works, PIT-search focuses on topic-
based inter-influence among social users over social networks. In
other words, if a search topic is hotly discussed by influential
connections, then this search topic will be highly recommended to
the user even if it does not match the user’s profile, query logs, or
shortest distance.

8 CONCLUSIONS

Personalized influential topic search in social networks isan
increasingly important problem. In this paper, we proposedthe
problem of personalized influential topic search (PIT-Search) in
social networks. To make the PIT-Search more effective and effi-
cient, we then developed two approximation approaches capable
of selecting representative users as a social summarization for a
given topic. We have also designed and presented a personalized
influence propagation index and a top-k PIT-Search algorithm.
Our experimental evaluation has verified the effectivenessof the
approximate approaches and the efficiency of the top-k index.

9 ACKNOWLEDGMENTS

This work was supported by the ARC Discovery Projects un-
der Grant No. DP120102627, DP140101587, DP160102114, and
DP160102412. This research is partially supported by Research
Grants Council of the Hong Kong SAR, China No. 14209314,
NSF CAREER award #1322406, Google Research Award, and an
endowment from the Leir Charitable Foundations. Shane Culpep-
per is the recipient of an Australian Research Council DECRA
Research Fellowship (DE140100275).

REFERENCES

[1] P. K. Atrey, M. S. Kankanhalli, and B. J. Oommen. Goal-
oriented optimal subset selection of correlated multimedia
streams.TOMCCAP, 3(1), 2007.

[2] D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman,
N. Har’El, I. Ronen, E. Uziel, S. Yogev, and S. Chernov.
Personalized social search based on the user’s social network.
In CIKM, pages 1227–1236, 2009.

[3] W. Chen, Y. Wang, and S. Yang. Efficient influence maxi-
mization in social networks. InKDD, pages 199–208, 2009.

[4] E. W. Dijkstra. A note on two problems in connexion with
graphs.Numerische Mathematik, 1:269–271, 1959.

[5] G. J. Fakas. A novel keyword search paradigm in relational
databases: Object summaries.Data Knowl. Eng., 70(2):208–
229, 2011.

[6] G. J. Fakas, Z. Cai, and N. Mamoulis. Versatile size-l
object summariesfor relational keyword search.IEEE Trans.
Knowl. Data Eng., 26(4):1026–1038, 2014.

[7] G. J. Fakas, Z. Cai, and N. Mamoulis. Diverse and propor-
tional size-l object summaries for keyword search. InACM
SIGMOD, pages 363–375, 2015.

[8] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based
approach to social influence maximization.PVLDB, 5(1):
73–84, 2011.

[9] J. Guo, P. Zhang, C. Zhou, Y. Cao, and L. Guo. Personalized
influence maximization on social networks. InCIKM, pages
199–208, 2013.

[10] H. G. Kemeny and J. L. Snell. Ch. 3: Absorbing markov
chains. InFinite Markov Chains (Second ed.), page 224.
New York Berline Heidelberg Tokyo:Springer-Verlag, 1976.

[11] D. Kempe, J. M. Kleinberg, and́E. Tardos. Maximizing the
spread of influence through a social network. InKDD, pages
137–146, 2003.

[12] J. Kim, S. Kim, and H. Yu. Scalable and parallelizable
processing of influence maximization for large-scale social
networks? InICDE, pages 266–277, 2013.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M.
VanBriesen, and N. S. Glance. Cost-effective outbreak
detection in networks. InACM SIGKDD, pages 420–429,
2007.

[14] H. Li, S. S. Bhowmick, A. Sun, and J. Cui. Conformity-
aware influence maximization in online social networks.
VLDB Journal, 24(1):117–141, 2015.

[15] J. Li, C. Liu, and M. S. Islam. Keyword-based correlated
network computation over large social media. InIEEE ICDE,
pages 268–279, 2014.

[16] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang.
Towards social user profiling: unified and discriminative
influence model for inferring home locations. InKDD, pages
1023–1031, 2012.

[17] R. Li, J. X. Yu, X. Huang, and H. Cheng. Random-walk
domination in large graphs. InICDE, pages 736–747, 2014.

[18] Y. Li, Z. Bao, G. Li, and K. Tan. Real time personalized
search on social networks. InICDE, pages 639–650, 2015.

[19] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining topic-
level influence in heterogeneous networks. InCIKM, pages
199–208, 2010.

[20] Q. Mei, J. Guo, and D. R. Radev. Divrank: the interplay
of prestige and diversity in information networks. InKDD,
pages 1009–1018, 2010.

[21] M. G. Noll and C. Meinel. Web search personalization via
social bookmarking and tagging. InISWC, pages 367–380,
2007.

[22] P. W. Olsen, A. G. Labouseur, and J. Hwang. Efficient top-k
closeness centrality search. InICDE, pages 196–207, 2014.

14

[23] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical
Report 1999-66, Stanford InfoLab, November 1999.

[24] R. Pemantle. Vertex-reinforced random walk.Probability
Theory and Related Fields, 92(1), 1992.

[25] X. Qian, H. Feng, G. Zhao, and T. Mei. Personalized
recommendation combining user interest and social circle.
IEEE Trans. Knowl. Data Eng., 26(7):1763–1777, 2014.

[26] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. InKDD, pages 61–70, 2002.

[27] R. Rymon. Search through systematic set enumeration. In
KR, pages 539–550, 1992.

[28] T. Takahashi, R. Tomioka, and K. Yamanishi. Discovering
emerging topics in social streams via link-anomaly detection.
IEEE Trans. Knowl. Data Eng., 26(1):120–130, 2014.

[29] J. Vosecky, K. W. Leung, and W. Ng. Collaborative person-
alized twitter search with topic-language models. InSIGIR,
pages 53–62, 2014.

[30] W. Webber. Evaluating the effectiveness of keyword search.
IEEE Data Eng. Bull., 33(1):54–59, 2010. URL http://sites.
computer.org/debull/A10mar/webber-paper.pdf.

[31] H. C. Wu, R. W. P. Luk, K. Wong, and K. Kwok. In-
terpreting TF-IDF term weights as making relevance de-
cisions. ACM Trans. Inf. Syst., 26(3), 2008. doi: 10.
1145/1361684.1361686. URL http://doi.acm.org/10.1145/
1361684.1361686.

[32] H. Yin, B. Cui, H. Lu, Y. Huang, and J. Yao. A unified
model for stable and temporal topic detection from social
media data. InICDE, pages 661–672, 2013.

[33] H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun. Influence
maximization in dynamic social networks. InICDM, pages
1313–1318, 2013.

Jianxin Li received his BE and ME degrees in
computer science, from the Northeastern Uni-
versity, China, in 2002 and 2005, respectively.
He received his PhD degree in computer sci-
ence, from the Swinburne University of Technol-
ogy, Australia, in 2009. He is currently a lecturer
in the School of Science, RMIT. His research
interests include database query processing &
optimization, and social network analytics.

Chengfei Liu received the BS, MS and PhD de-
grees in Computer Science from Nanjing Univer-
sity, China in 1983, 1985 and 1988, respectively.
Currently he is a Professor in the Faculty of Sci-
ence, Engineering and Technology, Swinburne
University of Technology. His current research
interests include keywords search on structured
data, query processing and refinement for ad-
vanced database applications, query processing
on uncertain data and big data, and data-centric
workflows. He is a member of IEEE, and a mem-

ber of ACM.

Jeffrey Xu Yu received the BE, ME, and PhD
degrees in computer science, from the University
of Tsukuba, Japan, in 1985, 1987, and 1990,
respectively. Currently he is a Professor in the
Department of Systems Engineering and Engi-
neering Management, The Chinese University of
Hong Kong. His major research interests include
graph mining, graph database, social networks,
keyword search, and query processing and op-
timization. He is a senior member of IEEE, a
member of the IEEE Computer Society, and a

member of ACM.

Yi Chen is with Martin Tuchman School of
Management, with a joint appointment at the
College of Computing Sciences at New Jersey
Institute of Technology. Her research interests
focus on data management technologies and
their applications in healthcare, business and
Web, such as information search, recommen-
dation systems, social computing, and workflow
management. She was a general chair of SIG-
MOD’2012, and is serving an associate editor for
PVLDB, DAPD, and ECRA. Yi Chen is a recipient

of Peter Chen Big Data Young Researcher Award, a Google Research
Award, IBM Faculty Award and an NSF CAREER Award. She received
her Ph.D. from the University of Pennsylvania and her B.S. from Central
South University in 2005 and 1999, respectively.

Timos Sellis is a Professor at Swinburne Uni-
versity of Technology, Australia. He got his PhD
degree in computer science from the University
of California, Berkeley, in 1986. Till the end of
2012 he was the Director of the Institute for the
Management of Information Systems (IMIS) and
a Professor at the National Technical Univ. of
Athens, Greece. Between 2013 and 2015 he
was a Professor at RMIT University, Australia.
His research interests include big data, data
streams, personalization, data integration, and

spatio-temporal database systems. He is a Fellow of IEEE and ACM.

J. Shane Culpepper completed a PhD at The
University of Melbourne in 2008. Since then he
has been a faculty member at RMIT University,
with research interests in designing efficient al-
gorithms and data structures for a wide variety
of information storage and retrieval problems.

