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Abstract. The problem of maximizing bichromatic reverse k nearest
neighbor queries (MaxBRkNN) has been extensively studied in spa-
tial databases, where given a set of facilities and a set of customers, a
MaxBRkNN query returns a region to establish a new facility p such that
p is a kNN of the maximum number of customers. In the literature, cur-
rent solutions for MaxBRkNN queries are predominantly static. However,
there are numerous applications for dynamic variations of these queries,
including advertisements and resource reallocation based on streaming
customer locations via social media check-ins, or GPS location updates
from mobile devices. In this paper, we address the problem of continu-
ous MaxBRkNN queries for streaming objects (customers). As customer
data can arrive at a very high rate, we adopt two different models for
recency information (sliding windows and micro-batching). We propose
an efficient solution where results are incrementally updated by reusing
computations from the previous result. We present a safe interval to re-
duce the number of computations for the new objects, and prune the ob-
jects that cannot affect the result. We perform extensive experiments on
datasets integrated from four different real-life data sources, and demon-
strate the efficiency of our solution by rigorously comparing how different
properties of the datasets can affect the performance.

1 Introduction

Given two distinct types of objects, a set P of facilities and a set O of customers,
if a facility p (p ∈ P ) is a kNN of a customer o (o ∈ O), then o is one of the
Bichromatic Reverse k Nearest Neighbor (BRkNN) of p. Given a set of facilities
and a set of customers, a Maximizing Bichromatic Reverse k Nearest Neighbor
(MaxBRkNN) query returns a region to establish a new facility p such that p
is a kNN of the maximum number of customers [6, 12, 19]. In this study, we
explore the problem of MaxBRkNN queries over streaming geo-data in spatial
databases. This problem is critical in many real-time resource supply scenarios.
For example, when a disaster happens, how can supplies be allocated dynamically
to different rescue stations? The optimal location p with the greatest need for
supplies should be updated based on patient arrivals in near real-time.

However, existing MaxBRkNN studies neglect the fact that the cardinality of
the objects in the current spatial region can change continuously as new objects
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Fig. 1: Motivation Example

are arriving and expiring. Below is an example of MaxBRkNN on streaming
objects. For ease of illustration, we will consider k = 1 in the following example,
which can be easily extended to the case k>1.

Example 1. Figure 1a shows the location of two facilities p1 and p2, and the location
of three customers o1, o2, o3 for the time instance t0. As the set of customers changes,
due to the arrival of new customers and the departure of other customers, Figure 1b
and Figure 1c present two alternatives for new facility p placements at time t1. The
reverse kNN of each facility is shown with a connecting dotted line in the figures.

In Figure 1a, RNN(p1, P )={o3}, RNN(p2, P )={o1, o2}, where RNN(pi, P ) de-

notes the set of RNN customers for pi in P . After the arrival of a new customer o4 and

the departure of a customer o1 at time t1, Figure 1b and Figure 1c show two alternative

location choices for placing a new p that can serve the maximum number of customers.

The location shown in Figure 1b is not a suitable choice as RNN(p, P∪p) = {o3}, where

the location shown in Figure 1c is the optimal choice as RNN(p, P ∪ p) = {o2, o3, o4}.
As the set of customers changes, the optimal location needs to be continuously updated.

In this paper, we address the problem of continuous updates in MaxBRkNN
queries for streaming objects, where, given a set P of static facility locations,
a stream of locations of customers O, a positive integer k, the problem is to
update the optimal region in space to place a new facility p such that p has
the maximum number of BRkNNs in O. To maintain recency information and
minimize memory costs, a sliding window model is imposed on the stream, and
a customer is valid only while it remains in the window.

We consider two commonly used sliding window models: count-based and
time-based windows [8]. Both are represented by a window size |W | and a slide
size ∆w, which are either a fixed number of objects for count-based windows, or
time intervals for time-based windows. We also consider two variants of count-
based windows: (i) real-time updates where ∆w is ‘1’, i.e., the result needs to be
updated each time a new customer arrives; and (ii) micro-batching of customers
for ∆w> 1, i.e., the ∆w customer changes are processed together to update the
result. We propose solutions robust to both windows, however, the choice of an
appropriate sliding window setting will depend on the intended application.

To the best of our knowledge, there is no prior work on supporting
MaxBRkNN queries over streaming objects. Existing approaches present static-
only solutions [6, 12, 19]. In large datasets, static MaxBRkNN solutions are



incapable of efficiently supporting sliding window models since the number of
redundant computations are incurred as a function of the window size. There-
fore, we propose new approaches to incrementally update the current result set
based on the previous computations.

In our proposed approach, we reuse the computations for the customers
shared between two consecutive windows to update the optimal result in order
to avoid redundant computations. Specifically, every time the sliding window
shifts a distance of ∆w, the results of the previous window and the overlap-
ping objects are used to update the information of the new objects locally. We
present the notion of a “safe interval” to reduce the number of computations
for updated objects. Then only the objects that can influence the optimal region
will be evaluated to update the result.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 formalises the MaxBRkNN problem. Section 4 proposes our
baseline algorithm and optimization method. Section 5 evaluates the proposed
methods through extensive experiments on real dataset, and Section 6 concludes
the paper.

2 Related Work
Several studies have investigated the problem of finding a location or a region
in space to establish a new facility such that the facility can serve the maximum
number of customers based on different optimization criteria. The related body
of work includes query processing on (i) static objects and (ii) dynamic objects.

2.1 Facility location selection queries on static objects

Based on the optimization criteria, the facility location selection problem can
be categorized mainly as Maximizing Bichromatic Reverse k Nearest Neighbor
(MaxBRkNN) queries and distance aggregation queries.

MaxBRkNN queries. Wong et al. [12] introduced the MaxOverlap algo-
rithm to solve the MaxBRkNN problem. Here, a circle is first defined for each
object o ∈ O, denoted by the Nearest Location Circle (NLC), where the center
of the circle is o and the radius is the distance between o and its kNN. They
reduced the problem of finding a region in space to the problem of finding the in-
tersection point of the NLCs that is covered by the largest number of NLCs. The
optimal region is obtained from the overlap of such NLCs. The MaxOverlap
algorithm was extended to support the Lp-norm and three-dimensional space in
a later work by the same authors [13].

Zhou et al. [19] presented the MaxFirst algorithm. In contrast to the other
studies, they consider the probability of a customer o visiting each of the ith

nearest facilities while finding the result. They construct a Quadtree by itera-
tively partitioning the space into quadrants until each quadrant is fully covered
by an NLC. For each quadrant, an upper and a lower bound of a number of NLCs
that intersect with that quadrant are computed. In each iteration, a quadrant
with the highest upper bound (which is more likely to become a part of the op-
timal region) is further partitioned into four quadrants. The process continues
until the upper and the lower bound of the quadrants converge.



Liu et al. [7] presented an approach called MaxSegment to reduce the search
space by transforming the optimal region search problem to the optimal interval
search problem in a one-dimensional space. The authors use a plane sweep-like
method to find the optimal interval. Finally, the optimal interval is transformed
back to the optimal region in the original two-dimensional space and returned
as the result.

Lin et al. [6] presented the OptRegion algorithm to solve the MaxBRkNN
problem. The key idea is to index the set of facilities with a kd-tree to find the
k nearest facilities of each object o ∈ O, and obtain an NLR (region enclosed by
NLC) for each o. A sweepline algorithm is employed to generate the intersection
lists for every NLR by traversing a “line” along the y-coordinates. The optimal
region is obtained from the NLRs containing the maximal intersection point.

The existing solutions rely on the fact that the set of objects is static, and
most of the solutions construct an index over the objects (or the NLCs). There-
fore, these solutions are not easily extendable to the streaming object scenario.

Distance aggregation queries. Qi et al. [11] have explored the optimal lo-
cation selection query, which finds a location for a new facility that minimizes
the average distance from each customer to its closest facility. An influence set
to manage a potential location p that includes customers for whom the nearest
facility distance is reduced if a new facility is established at p. A similar problem
was explored in other work [4, 10, 14, 15, 18] which try to find a location for
a new facility such that the maximum distance between the facility and any
customer is minimized. Papadias et al. [9] found a location that minimizes the
sum of the distances of a facility placed in that location from the customers.
These queries focus on an aggregation (such as average or summation) over the
distances of the optimal location from the objects. All of these approaches only
consider static objects and do not directly address the streaming MaxBRkNN
problem explored in this paper.

2.2 Facility location selection queries on dynamic objects

Ghaemi et al. [3] studied the MaxBRkNN problem for moving objects and facil-
ities in road networks, but the solution can only work when k = 1 (the nearest
facility). Their approach relies heavily on pre-computation, and uses multiple
lookup tables to answer the queries online. Specifically, for each o, they store
all edges (or parts of edges) with a distance less than or equal to its nearest
facility. The set of these edges is denoted as the “local network” of o. The infor-
mation of whether an edge or a part of an edge belongs to the local network of
multiple objects is also stored. When the location of an object is updated, the
most promising edges that could be the optimal location for a new facility are
obtained using the pre-computed information. Additionally, three atomic oper-
ations to support complex movement operations are proposed. An assumption
for these pre-computed local networks is that, an object can move only to a
neighboring location. In contrast, as a streaming object can arrive anywhere in
the space (or along any edge), the local network cannot be pre-computed for
that object. Thus it is not easy to extend this method to solve our problem.



Table 1: Related Work on MaxBRkNN

Study
Input

Distance
O P

[6, 7, 12, 13, 19] Static Static Euclidean
[3] Moving Moving Network

Our work Streaming Static Euclidean

Table 1 summarizes the existing related work and their problem settings.
Our work can also be used for other distance functions. Although the contri-
butions of the existing work are important, there exists a research gap between
these approaches and some real-life applications. The MaxBRkNN problem has
not been explored previously in the streaming object setting, and the existing
methods are not easily extensible for our problem.

3 Problem Formulation

Let P be a set of static facilities, where each p ∈ P is defined as a pair
(p.lat, p.lng), representing its geo-spatial location. Let O be a stream of tuples
〈o.lat, o.lng, o.t〉 in the order of their arrival time o.t, where each item represents
a customer o ∈ O and (o.lat, o.lng) represents its geo-spatial location.

We adopt the sliding window model where an object (customer) is valid
while it belongs to the current sliding window W . The window size can be
specified by time, count, and the update size as the number of insertions and
deletions between two consecutive windows [5]. A time-based window contains
the objects whose arrival time is within |W | most recent time-slots, where ∆w
can be different. In a count-based window, |W | and the update size (slide size)
∆w are constant. The window contains the |W | most recent data objects where
the window updates for each new ∆w (1 ≤ ∆w ≤ |W |) object arrivals. A small
value of ∆w represents real-time updates, where a larger ∆w depicts micro-
batching of objects. When the context is clear, we use the terms ‘customer’ and
‘object’ interchangeably. Let On be the set of customers inserted, and Oo be
the set of customers expired from the current window W . Before defining our
problem, we first present the necessary preliminaries.

k Nearest Neighbor Circle (c). Let kNN (o) be the k nearest neighbor facility
of a customer o. The k nearest neighbor circle co is a circle with the location of
o as the center and the distance between o and kNN (o) as the radius. Let C be
the set of kNN circles of all of the customers in the current window.

Intersection Circles Set (IS). Given a kNN circle co of a customer o, the
intersection circle set IS o is the set of circles that contain or intersect with co.

Maximal Intersection Point (s↑). As there is at least one intersection point
when any two circles overlap, let so be the intersection point in circle co with
the largest number of overlapping circles from C, and ηs be the number of the
circles overlapping with so. Let s↑ be the intersection point with the largest ηs,
and η↑ is its corresponding number of overlapping circles.



Definition 1. (Maximal Intersection Region, R) Given C, we define the max-
imal intersection region R such that (i) For ∀ r ∈ R, |RkNN(r, P )| is maximal,
where r is a point location; (2) For ∀r, r′ ∈ R, RkNN(r, P ) = RkNN(r′, P ).

Problem Statement. Given a set P of static facility locations, a stream of
customers O, a positive integer k, and a sliding window model on O, the contin-
uous MaxBRkNN problem on a stream is to continuously update the Maximal
Intersection Region, R for the customers valid in the updated window. There
may exist multiple Maximal Intersection Regions.

4 Algorithm

In this section we propose the following different solutions to address the
MaxBRkNN problem on streaming objects: (i) As there are multiple studies
that address the MaxBRkNN query for static objects, first we apply one of the
approaches directly to solve the problem on streaming objects (customers) as
our baseline. (ii) The baseline is originally designed for static objects and does
not reuse any computation for the streaming objects. Instead, we propose an
optimized solution where computations are shared among the consecutive win-
dows as much as possible. (iii) We further propose two more optimizations: (a)
safe interval, and (b) pruning of objects that cannot update the result from the
previous window, on top of our proposed solution to improve overall efficiency.

4.1 Baseline Algorithm

We adopt the solution, OptRegion, proposed by Lin et al. [6] for our base-
line, as they have shown that their solution consistently outperforms two other
state-of-the-art solutions (MaxOverlap [12] and MaxFirst [19]). The Op-
tRegion solution applies the principle region-to-point transformation [12] to
find the intersection point overlapping with the maximum number of circles. If
such a maximal intersection point s↑ is found, then the maximal intersection
region R (the result of the MaxBRkNN query) can be easily obtained from the
circles overlapping with s↑.

As the OptRegion algorithm is proposed for static objects, every time the
sliding window updates, we invoke the algorithm in our baseline. Algorithm 1
shows the pseudocode of the baseline. Here, the set of the facilities P is indexed
using a kd-tree. The index is initially built before processing any queries. The
input of the algorithm is the set of all objects in the initial window W and the
kd-tree over P . Whenever the window updates, the steps of the OptRegion
algorithm are executed. There are three main steps in the algorithm:

1. Find the kNN circle co: For each object o in the window, the kd-tree
over P is used to find the k nearest neighbors of o. Then the co for each
o (Lines 2-3) is constructed, where the center is the location of o, and the
radius is the distance from o to its kNN.

2. Find the set of intersecting circles: For each circle co, the sweepline
algorithm outlined in Algorithm 1 of Lin et al. [6] is used to determine the
set IS o of the circles intersecting with co. This sweepline algorithm scans



Algorithm 1 Baseline (W , kd-tree over P )

1: η↑ ← 1
2: for o in W do
3: compute co of o using the kd-tree

4: for o in W do
5: ISo ← Set of circles overlapping with co by a sweepline algorithm
6: for ci in ISo do
7: update ISi

8: Sort |IS| in descending order of |ISo|
9: for ISo in IS do

10: if |ISo| >η↑ then
11: compute the exact η of co
12: if η > η↑ then
13: update η↑ and s↑

14: else Break
15: find the intersection of all circles containing s↑ and update R
16: return R

along the y-coordinate of each circle that is valid in the current window
from top to bottom to find IS o. Let the highest and the lowest y-coordinate
of a co be y↑o and y↓o , respectively. When the sweepline reaches the y↑o of co,
co is inserted in a status tree (AVL tree). However, when the bottom point
y↓o is encountered, co is deleted from the status tree. This status tree, which
is updated dynamically, saves the candidate IS o of the current circle.

3. Find the maximal intersection point s↑: Here, the maximum number
of circles overlapping with an intersecting point s of a co can be at most IS o

(the number of circles intersecting with co). The set IS o of the objects are
sorted and considered in descending order of cardinality. We maintain the
maximum value η↑ of intersecting circles for any intersection point found so
far. If the IS o of any co is greater than η↑, the actual number of intersections
for co is computed by sweeping around the perimeter of co and finding the
intersection point s with IS o. The value of s↑ and η↑ are updated if necessary.

4. Finally, the optimal region R is constructed as the intersecting region of all
of the circles overlapping with the point s↑, and R is returned as the result.
The process is repeated when the window updates again.

Example 2. Figure 2 illustrates an example of the initial process of the baseline. For
ease of presentation, we omit the set P from the figure. Let A and B be the top point
and bottom point of c1, respectively. The five states of the sweepline of c1 are l1, l2, l3,
l4 and l5. In the l1 state, the AVL tree has two nodes: c1 and c4. In l2, c4 is removed
from the AVL tree. For l3, the top point of c2 is encountered, and c2 is inserted into the
AVL tree. In l4, c3 is inserted in the tree. And finally for l5, the sweepline reaches the
bottom point B, and c1 is deleted. We then stop updating IS1. We choose the union of
circles (except itself) under these states as the upper bound of IS1, which is {c2, c3, c4}.
Correspondingly, we also need to update the IS of each circle ci in IS1, for example, c1
should be added to IS4. Note that IS1 = {c2, c3, c4}, c4 does not intersect with c1 since
they do not have any common intersection point. We sort |ISo| in descending order to



Fig. 2: An example of the initial process. Fig. 3: An example of the first slide.

get: |IS1| = 3, |IS2| = 2, |IS3| = 2, |IS4| = 1, |IS5| = 1, |IS6| = 1. We traverse c1 with
the largest |ISo|, and s (shown in the figure) is returned because it has the largest η,
which equals to 3. Then we update η↑ to 3 and s↑ to s. The next iteration results in
early termination as |IS2| <3. Finally, R is found (shown as the shaded area) as the
area overlapped by c1, c2 and c3, which overlaps with s↑.

An example of the update phase for the first slide is illustrated in Figure 3 for

∆w = 1. From the example in Figure 2, o1 is expired and o7 arrives.We repeat a new

computation from scratch to find the new R (shown as a shaded area in the example).

Drawbacks of baseline algorithm. When the sliding window updates, the
baseline algorithm repeats the process for all of the objects in W . However, for
a count-based window, only ∆w objects are inserted, where W − ∆w objects
are common in the two consecutive windows. For a time-based window, W −
Oo objects are common in the two consecutive windows. Thus, the baseline
algorithm requires a substantial number of repeated computations. Therefore,
we propose the following refinements to the algorithm that only consider the
inserted and expired objects (that are not common between two consecutive
windows) when updating the optimal region.

4.2 Algorithmic Improvements

The key idea of our proposed algorithm is to share the computations between two
consecutive windows whenever possible. After initializing the sliding window, the
optimal region R is first obtained by any of the existing MaxBRkNN algorithms
on static objects for the objects in the initial W . Then each time the window
updates, our proposed optimization algorithm outlined in Algorithm 2 is called
to update the result R. Here, the input of the algorithm is the previous window
W ′, the current window W , and the kd-tree over P . Algorithm 2 consists of the
following steps:

– The set of the newly inserted objects On and the expired objects Oo are
obtained from the previous and the current window.

– Updating only for the required objects: In contrast to the baseline
where the co of each object in the current window is computed, we compute
the kNN circle co of only the objects in On using a sweepline algorithm,



Algorithm 2 Optimized Algorithm (W ′,W , kd-tree over P )

1: On ←W −W ′

2: Oo ←W ′ −W
3: η ← 1
4: for each o in On do
5: compute co of o using the kd-tree

6: for each o in On do
7: ISo ← Set of circles overlapping with co by a sweepline algorithm
8: for ci in ISo do
9: update IS i

10: for each o in Oo do
11: for ci in ISo do
12: update IS i

13: C ← Set of co for all o ∈W
14: Lines 9 - 13 of Algorithm 1
15: Find the intersection of all circles containing s↑ and update R
16: return R

and compute the set IS o of circles intersecting with each o ∈ On. The set of
intersecting circles IS o is also updated for each expired object o ∈ Oo (Lines
10 - 12). Thus, instead of the steps in Lines 2 - 7 of Algorithm 2 where the
computations are done for each object in W , the computations are now done
only for the objects in On and Oo that are not common between W and W ′.

– Finding the maximal intersecting point, s↑: We execute Lines 9 - 13 of
Algorithm 1 to find s↑. In contrast to the baseline, we do not sort IS o based
on their cardinality again, as only a subset of them are likely to change.

– Finally, similar to the baseline, we compute the optimal region R from the
point s↑ and return R.

Example 3. From the example in Figure 2 and Figure 3, let ∆w = 1, o1 expires, and

o7 arrives as a new object. First, we construct c7 and compute IS7 = {c5, c6} for the

new object using the sweepline algorithm. Then we update IS2 = {c3} and IS3 = {c2}
because c1 is expired, and then update IS5 = {c6, c7} and IS6 = {c5, c7} for the arriving

object c7. As |IS5| has the maximal value, then we sweep around c5 to find the maximal

intersection point s (shown in Figure 3). Finally, the previous s↑ is replaced by the new

s, and the result region R (shown as the shaded area) is also updated. It is worth noting

that we only need to compute the new circles (c7 in this example) in our algorithm, but

all of the valid circles require recomputations in the baseline algorithm.

Drawbacks of the optimization algorithm. Although Algorithm 2 improves
the performance by reusing computations, it has the following drawbacks:

1. In Line 7, the sweepline algorithm outlined in Algorithm 1 by Lin et al. [6] is
employed to determine the set IS o of the intersecting circles for each object
o ∈ On. This sweepline algorithm scans along the y-coordinate of each valid
circle in the current window from top to bottom to find IS o. However, when



Fig. 4: Illustration of pruning rule 1.

only a subset of the circles change (inserted or expired), sweeping along the
y-coordinate of each circle results in many unnecessary circle scans.

2. The value η↑ denotes the maximum number of circles overlapping with the
intersecting point found so far. Each time η↑ is initialized as ‘1’. However, the
optimal region R of the previous window, and thus the η↑ for the previous
window can be decreased by at most ∆w due to the expired circles.

In order to overcome these drawbacks, we propose two different pruning rules.

Pruning Rule 1: safe interval. The sweepline algorithm presented in Al-
gorithm 1 by Lin et al. [6] scans the circles from top to bottom along the y-
coordinate. In contrast, we want to determine a safe interval around the circle co
such that any circle outside the safe interval cannot overlap with co, thus avoid
scanning the unnecessary circles for co in the sweepline algorithm.

Let, the maximum diameter among the circles valid in the current window
be maxd, and the highest and the lowest value in the y-coordinate of a co are
y↑o and y↓o , respectively. As the sweep is performed in a top-down manner, only
the circles whose highest y-coordinate are within y↑o +maxd and y↓o can possibly
overlap with the circle co. Thus we only need to scan the safe interval y↑o +maxd
to y↓o in the sweepline algorithm for a circle co.

Example 4. In Fig. 4, c8 is generated after the second slide. The circles c4, c5, c6, c7
are pruned as their top points are not within safe interval, while c3 is added into IS8.

Pruning Rule 2: using the result of the previous window. As shown in
Line 10 of Algorithm 1 (which is also executed in Line 14 of Algorithm 2), we
only need to compute the exact η of an object o if the corresponding |IS o| is
greater than η↑. As only Oo circles can expire, the η↑ of the previous window
(the maximum number of overlapping circles) can decrease by at most Oo. Thus,
we can update the algorithm where additional input is the η↑ of the previous
window, and initialize η↑ of the current window as η↑ − |Oo|. If η↑ − |Oo| is less
than ‘1’, we initialize η↑ as ‘1’. For a count-based window, |Oo| = ∆w.



5 Experimental Evaluation
In this section, we present the experimental evaluation for our solutions when
continuously updating results for MaxBRkNN on sliding windows. In particular,
we compare our proposed optimization solution (OP) with the baseline (BA),
and further evaluate the benefit of applying each of the proposed pruning rules
– pruning rule 1 (P1) and pruning rule 2 (P2) as proposed in Section 4.2.

5.1 Experimental Settings
All of our experiments were conducted on a Intel(R) Core(TM) i5-7200U
CPU@2.50GHz processor and 8GB memory, running a Ubuntu 17.10 operating
system. All algorithms were implemented in C++. The GCC version was 7.2.0.

Fig. 5: Checkins in NYC

Data Source Check-ins Proportion

Foursq NYC [16] 227,428 15.29%
Foursq Global [17] 289,727 19.48%
LSSD [1] 710,827 47.79%
Gowalla [2] 139,171 9.36%
BrightKite [2] 120,359 8.18%

Table 2: Dataset: Check-in information.

Datasets. We conduct all experiments on an integrated real dataset, which is
a combination of five different real check-in datasets. Table 2 shows a summary
of all the datasets before integration. Each dataset contains the location of the
points of interest (POIs) and the check-in locations of the users. The Foursq NYC
dataset collected from Foursquare contains POIs and check-in information of
only New York City. The rest of the datasets consist of check-ins and POIs, where
the locations are distributed all around the world. These datasets are collected
from Foursquare [16, 17], the Location Sharing Services Dataset (LSSD) [1],
Gowalla [2], and BrightKite [2].

We combine these datasets and take a subset, denoted as ‘NYC’, where the lo-
cations of the POIs and check-ins are all within New York City. We get 1,471,074
check-ins from mid April 2008 to mid September 2013 after duplicate removal,
and 299,698 unique POIs in NYC. A graphical view of the check-in locations of
this dataset is shown in Figure 5 as a heatmap.

To conduct the experiments, an area where the check-ins are located is chosen
as a pre-defined percentage of the total area of the dataset. Note that, area size
is a parameter of our experiments where the default area is 1%. We issued a
range query with the area size in a random location. If the number of check-ins
in that region is greater than 10% of the total check-ins, we denote that as a high
density area. Similarly, we find mid and low density areas with check-in numbers
– around 5% and 1% of the total check-ins. We report the average performance
for 50 shifts of the sliding window for each setting.

Evaluation and parameterization. We study the efficiency of the baseline
(BA), our proposed solution (OP), pruning rule 1 on top of OP (OPF), and both
pruning rule 1 and pruning rule 2 together on top of OP (OPFS) as a function



Table 3: Parameters

Parameter Symbol Range

Window size |W | 3000, 3500, 4000, 4500, 5000
Slide size ∆w 1, 100, 200, 400, 600, 800
No. of k nearest neighbors k 2, 5, 10, 20, 50
Density of check-ins d 1%, 5%, 10%
Area of check-ins a 0.5%, 1%, 2%, 4%

Table 4: Runtime comparison of BA and OPFS (ms).

Model BA OPFS

Micro-batch 1,429 189
Real-time 1,348 54

of varying parameters. The parameters and their ranges are listed in Table 3,
where the default values are in bold. For all experiments, a single parameter is
varied while the rest are fixed as their default.

Among the parameters, ∆w denotes the number of objects updated in the
window. Since ∆w of a general count-based window is a fixed integer between
1 to |W |, in contrast to a time-based window where ∆w varies, we present our
experimental results for count-based window to better demonstrate the effect of
varying a single parameter. However, all of our proposed approaches are appli-
cable for both types of windows.

For each ∆w-sized update of the window, we study the impact of each pa-
rameter on: (i) the total runtime, and (ii) the percentage of iterations pruned
by P1 and P2 with respect to the OP. As a small value of ∆w represents real-
time updates, and a larger ∆w depicts micro-batching of objects, we present our
experimental results in two parts:

– Section 5.2.1 presents the real-time update experiments, where ∆w is 1, and
a single parameter other than ∆w is varied while keeping the rest as default.

– Section 5.2.2 presents the experiment for micro-batching, where ∆w is varied
in a set of experiments from 1 to 800, and the default ∆w is set as 400.

5.2 Performance Evaluation

We first compare the baseline (BA) and our proposed OPFS (which applies
both pruning rules on top of our OP method) for the default parameter settings
and show the runtime of both methods in Table 4. As BA applies an existing
algorithm originally designed for static objects, the runtime of BA is about one to
two orders of magnitude higher than OPFS for the streaming query. Due to this
huge difference in performance, we exclude BA from the rest of the experimental
evaluation as this is representative of the best case for the baseline algorithm,
and compare the performance among OP, OPF, and OPFS only.

5.2.1 Real-time Processing (∆w = 1)

Varying |W |. Fig. 6a shows the effect of varying the size |W | of a window. As
more kNN circles are likely to intersect with each other as |W | increases, the



 0
 2

0
 4

0
 6

0
 8

0
 1

00

 3000  3500  4000  4500  5000

U
p

d
at

e 
T

im
e 

(m
s)

W

OP
OPF

OPFS

(a) Runtime for update

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

 3000  3500  4000  4500  5000

P
ru

n
in

g
 P

o
w

er
 (

%
)

W

P1
P2

(b) Percentage of pruning

Fig. 6: Effect of varying |W | with real-time processing.
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Fig. 7: Effect of varying k with real-time processing.

runtime increases for all of the three methods as |W | increases. As P1 reduces the
number of circles to be checked while finding the intersection of the newly arrived
objects, the percentage of pruning by P1 decreases for a higher |W | (where there
are more circles), as shown in Fig. 6b. In contrast, the percentage of pruning
from P2 increases with |W |. The reason is that, although more circles may
intersect with each other, there are not many intersection points that can become
a candidate better than the previous window’s result, thus more intersection
points can be pruned from consideration.

Varying k. The radius of each kNN circle increases w.r.t. k. As the radius
increases, more circles intersect, and thus the runtime increases with k in all
of the approaches (Fig. 7a). The runtime of the OP approach increases rapidly
for k > 20, where the other two methods do not vary much. As more circles
intersect, the percentage of pruning by P1 decreases with the increase of k, as
shown in Fig. 7b.
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Fig. 8: Effect of varying a with real-time processing.



Table 5: Varying d with real-time processing.

Density
Update Time (ms) Pruning Power

BA OP OPF OPFS P1 P2

1% 904 61 52 45 0.60 0.29
5% 1,225 74 61 54 0.67 0.58
10% 1,348 76 65 57 0.64 0.63

Varying a. We vary the size of the area where the check-ins are located as a
percentage of the total area of the dataset. A higher percentage of the area (a)
denotes that locations of the objects in a window are sparser. As the chances
of circles intersecting with each other decrease as their density becomes sparser,
the runtime decreases (Fig. 8a).

Varying d. Table 5 shows the performance of the four approaches for varying d.
As more circles are likely to intersect with each other for a higher percentage of
density, the runtime increases for each method. The runtime of BA is around one
to two orders of magnitude higher than the other methods. As the result region
is likely to have a higher number of intersecting circles for a higher density, P2
shows a greater benefit by pruning the intersecting points that cannot be better
than the previous window’s result.
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Fig. 9: Effect of varying |W | with micro-batching.
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Fig. 10: Effect of varying ∆w with micro-batching.

5.2.2 Micro-batching (∆w ≥ 1) Here, we show the performance when
varying different parameters in a more general sliding window setting, where
the ∆w can be greater than or equal to 1. The runtime and the percentage of
pruning by varying each parameter are shown in Fig. 9a - 12b. The trends are
mostly similar to the previous set of experimental evaluations, except that P2 is
more effective for real-time processing. This is because P2 relies on the difference
that can happen to the result of the previous window, i.e., η↑ − ∆w, but this
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Fig. 11: Effect of varying k with micro-batching.
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Fig. 12: Effect of varying a with micro-batching.

value becomes smaller for a larger value of ∆w, thus the pruning effect is reduced
in larger windows. As the rest performance results are similar, we focus on the
effect of varying ∆w in this section.

Varying ∆w. A larger ∆w denotes that a smaller number of objects are shared
between two consecutive windows. As shown in Fig. 10a, the runtime is propor-
tional to the increase of ∆w, as more objects that are not common among the
windows (updated objects) need to be processed.

Table 6: Varying d with micro-batching.

Density
Update Time (ms) Pruning Power

BA OP OPF OPFS P1

1% 1,408 186 157 157 0.64
5% 1,429 198 164 164 0.69
10% 1,489 212 189 189 0.72

6 Conclusion
In this paper, the problem of maximizing bichromatic reverse k nearest neighbor
queries on streaming geo-data is introduced for the first time. We proposed an ef-
ficient solution where results are incrementally updated by reusing computations
from the previous result. Our solution can work on both the count-based and the
time-based sliding window models, thereby supporting both real-time processing
and micro-batch processing. Extensive experiments based on real datasets have
been conducted to verify the efficiency of our solution.
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