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ABSTRACT
Simulation and analysis have shown that selective search can re-
duce the cost of large-scale distributed information retrieval. By
partitioning the collection into small topical shards, and then us-
ing a resource ranking algorithm to choose a subset of shards to
search for each query, fewer postings are evaluated. Here we ex-
tend the study of selective search using a fine-grained simulation
investigating: selective search efficiency in a parallel query pro-
cessing environment; the difference in efficiency when term-based
and sample-based resource selection algorithms are used; and the
effect of two policies for assigning index shards to machines. Re-
sults obtained for two large datasets and four large query logs con-
firm that selective search is significantly more efficient than con-
ventional distributed search. In particular, we show that selective
search is capable of both higher throughput and lower latency in a
parallel environment than is exhaustive search.

1. INTRODUCTION
A selective search architecture divides a document corpus or cor-

pus tier into P topic-based partitions (shards), and assigns them to
M processing machines, typically with P � M ≥ 1. When a
query arrives, a resource ranking algorithm (also known as “re-
source selection” or “shard ranking”) selects a small number of
shards to be interrogated for that query, and passes the query to
the machines hosting those shards. The per-shard search results are
then combined to produce an answer list [9]. If only a few shards
are searched for each query, costs are reduced compared to search-
ing all of the shards for every query. Selective search provides sim-
ilar effectiveness to exhaustive search when measured by metrics
such as P@10, NDCG@100, and Average Precision [1, 5, 6].

Previous work estimated efficiency by summing the length of
the postings lists processed for each query, and compared selective
search to exhaustive search using those counts as a surrogate for
total workload. But this approach does not consider how effort is
divided across processors, or interactions between queries resulting
from parallelism. In particular, traditional distributed search archi-
tecture that use a random assignment of documents to shards and
then search within all shards tend spread the workload evenly, and
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are relatively immune to bottlenecks. Selective search deliberately
concentrates similar documents into index shards and might be vul-
nerable to uneven workloads that restrict overall query throughput,
a consequence that cannot be identified by counting postings.

We use an event-based simulator to provide a more refined evalu-
ation of selective search, and in doing so lay a foundation on which
a full operational implementation can be built. That is, we define
a more realistic experimental methodology for studying the effi-
ciency of sharded search. Simulation makes it possible to investi-
gate a wider range of machine configurations than would be practi-
cal in a live system; in our case, we provide realistic estimated mea-
surements of query latency, system throughput, and hardware uti-
lization, for several different hardware arrangements. These mea-
surements lead to an improved shard allocation policy that provides
better load balancing across machines.

In doing so, we have extended previous evaluations, and are able
to provide answers to three key questions: (1) does selective search
provide higher query throughput than exhaustive search in parallel
environments; (2) does the choice of resource selection algorithm
affect throughput and load distribution in selective search; and (3)
do different methods of allocating shards to machines affect overall
query throughput.

2. SIMULATION MODEL
Resource Selection We make use of the Taily and Rank-S resource
selection mechanisms. In Rank-S, the query is used to rank docu-
ments in a centralized sample index (CSI); document scores are
then decayed exponentially and treated as votes for the shards the
documents were sampled from [7]. Taily assumes that the distribu-
tion of document scores for a single query term is approximated by
a Gamma distribution. Taily’s resource selection database stores
the two parameters describing each term’s distribution; then, at
query time, they are used to estimate the number of documents
from each resource that will have a score above a certain thresh-
old. In most situations Taily is faster to compute than Rank-S [1].

Simulation Design The simulator is based on the DESMO-J (http:
//desmoj.sourceforge.net/) framework. It models a selective search
system that incorporates a cluster of multi-core machines and par-
allel query execution across those machines. Figure 1 describes the
flows embedded in the simulator; Table 1 lists the quantities that
are manipulated; and Algorithm 1 describes the actions that take
place at each machine. The hardware is assumed to consist of M
machines, with the i th of those, machine mi, providing ci CPU
cores (ci = 8 throughout the paper).

Each broker holds a copy of the resource selection database and
performs two tasks: resource selection, and result merging. For
resource selection, it accesses a shared central query queue, from
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Figure 1: Distributed selective search. The i th of the M machines
has ci cores used for shard search across the pi shards allocated to
it, and (if allowed) for resource selection and result merging.

M Number of machines; mi is the i th of these.
ci Number of cores on mi; the default is ci = 8.
C Total number of cores,

∑M
i=1 ci.

pi Number of shards assigned to mi.
P Total number of shards. When each shard is assigned to

just one machine, P =
∑M

i=1 pi.
B Number of broker machines.
S Number of searcher machines.
T Query arrival rate described by an exponential distribution

with mean 1/λ, T = λ.
ts Seek plus latency access time, ms/postings list, ts = 4

throughout.
tp Processing cost, ms/posting, tp = 9× 10−4 throughout.
tm Merging cost, ms/item, tm = 5× 10−5 throughout.

Table 1: Simulation parameters.

which it extracts queries, determines which shards will be searched,
and assigns search tasks to other machines. Each broker also has
a job queue for pending result merge processes, containing results
returned by the searcher machines, waiting to be combined. A ma-
chinemi is a searcher if it is allocated pi > 0 search shards. It also
has a job queue that holds shard search requests. Each of the avail-
able cores on the machine can access any of the shards assigned
to the machine, and can respond to any request in that machine’s
search queue. When a search job is finished, the result is returned
to the result merge queue of the originating broker.

The assignment of shards and copies of the resource selection
database to machines is assumed to be fixed at indexing time, and
machines cannot access shards that are not hosted locally. A key
factor for success is thus the manner in which the P shards are
partitioned across the M machines.

Simulation Parameters Queries are assumed to arrive at the cen-
tral queue at random intervals determined by an exponential distri-
bution with a mean query arrival rate T . Query processing costs are
computed based on the number of postings processed, plus an over-
head cost to account for initial latency for a disk seek, taking ts+`·

Algorithm 1 – Processing loop for each core on machine mi.

while forever do
if isBroker(mi) and |mergequeuei| > 0 and

all shard responses have been received for q then
remove those responses from mergequeuei
finalize the output for query q and construct a

document ranking
else if isSearcher(mi) and |searchqueuei| > 0 then

remove a query request (q, p, b) from searchqueuei
perform a shard search for query q against shard p
append the results of the search to mergequeueb

else if isBroker(mi) and |centralqueue| > 0 then
remove a query q from centralqueue
perform resource selection for q
for each partition p to be searched for q do

determine the machine mh that is host for p
append (q, p, i) as a search request to searchqueueh

endwhile

tp milliseconds, where ` is the number of postings. The processing
rate is based on measurement of the cost of handling posting lists in
the open source Indri search engine (http://lemurproject.org/) on a
machine with a 2.44 GHz CPU, and includes I/O and similarity cal-
culation costs. In the case of in-memory or SSD-based execution,
ts can be set to zero.

For the sample-based Rank-S algorithm, the same computational
model is used for resource selection as for shard search. For Taily,
the cost is computed for a nominal postings list of 2P parameters.
Result merging requires transferring of up to k 〈doc-id, score〉 re-
sults from each shard searched, where k is either fixed or is deter-
mined as part of resource selection. The cost of network communi-
cation over a Gigabit switched network was modeled as described
by Cacheda et al. [2], and an allocation of tm milliseconds per doc-
ument added to the cost. The processing model assumed that all
postings were processed for every query; in recent work, Kim et al.
[3] have shown that the use of WAND pruning does not affect the
relative efficiency relationship of selective vs. exhaustive search.

Simulation Input and Output All systems were configured to
return the top-ranked 1,000 documents, meaning that the selective
search required 1,000 documents to be returned from each of the
(typically) 3–5 shards that processed the query, but that less than
10% of that number was required from each shard in the exhaustive
search baseline because of the random allocation process used to
form them [2]. Overall, the simulator takes as input a list of queries,
the resource selection cost for each query, the shards to be searched
for the query, and the search cost for each shard. The simulator
converts these posting list costs into “milliseconds” on a per-shard
basis, and from them computes an overall elapsed time for each
query, taking into account contention for processor and disk, and
including queuing times. The primary variable in the simulator is
the query arrival rate, which determines the system load, and hence
the extent to which query response is affected by queuing delays.

3. EXPERIMENTS AND RESULTS
Document Collections and Query Streams Gov2 (25M docu-
ments, 24B words, split into 50 shards) and ClueWeb09-A English
(ClueWeb09, 500M documents and 381B words, split into 884
shards) are used in our experiments. The shard definitions were
generated by Kulkarni [4] and the resource selection parameters
are from Kulkarni [4] and Aly et al. [1]; preliminary trials con-



Queries Res. sel. Gov2 ClueWeb09
avg. sddev. avg. sddev.

MQT Taily 2.5 1.4 3.6 2.9
Rank-S 4.2 1.8 4.4 1.7

AOL Taily 2.9 1.6 11.9 31.3
Rank-S 4.6 1.9 4.2 1.7

Table 2: Average number of shards selected by Taily and Rank-S
for the two query logs, for the system configurations in Figure 2.
Parameters for Taily, n = 400, v = 50; for Rank-S, sample rate
= 1%, base = 3 (Gov2), base= 5 (ClueWeb09).
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Figure 2: Exhaustive search and selective search using random
shard assignment, two query sets, and M = S = 2 and B = 1.

firmed that we were able to match their effectiveness results. We
make use of the AOL query log and the TREC Million Query Track
queries. The AOL log was sorted by timestamp, and deduplicated
to simulate a system with a large answer cache. For ClueWeb09,
the first 1,000 queries were used as training, to set parameters; the
next 10,000 queries were used for testing. For Gov2, we used only
queries that had at least one .gov-domain result click recorded, and
then 1,000 and 10,000 queries used for training and testing. Sim-
ilar test sets were extracted from the TREC Million Query Track
(MQT), taking queries in the supplied order. Two further test query
sets were also extracted from the AOL log: 10,000 queries starting
one week after the main query stream; and another 10,000 queries
commencing one month after the main query stream.

Query Throughput We compare selective and exhaustive search
in an environment similar to that examined by Kulkarni [4, 5]. In
both cases the shards are randomly distributed across all machines,
with each machine receiving the same number of shards; exhaustive
search shards were constructed by placing 1/ci of the collection in
to each of ci shards, with ci = 8. In both configurations, only
one machine (B = 1) accepted broker tasks, to mimic the previous
experimentation. Table 2 summarizes the average number of shards
selected by the resource selection algorithms.

Figure 2 shows the simulated throughput of two selective search
variants, compared to exhaustive search. The vertical axis shows
the median time to process a single query, plotted as a function of
the query arrival rate on the horizontal axis. (Alternative summary
metrics such as the mean or the 95% percentile processing times
produced similar patterns of behavior.) Each curve represents one
combination of query set and processing regime, and the right-hand
end of each curve is truncated at a point at which the system config-
uration reaches saturation, defined as when the median processing
time exceeds twice the median processing time for queries in the
corresponding unloaded system (at the left-hand end of the curve).
Configurations in which the curve is lower have superior latency
under light load; configurations with elbows that are further to the
right require fewer resources per query, and attain higher through-
put rates when the system is under heavy load.
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Figure 3: Effect of number of brokers, using Rank-S, M = 2 ma-
chines (16 cores in total), and random shard assignment.

Selective search outperforms exhaustive search by a factor of
more than ten on the ClueWeb09 dataset because only a small frac-
tion of the 884 shards are searched for each query. Importantly,
query latency is also lower, despite the two-step process that is in-
volved – topical shards are smaller than random shards, and can be
searched more quickly. A larger fraction of the shards are searched
in Gov2, and the performance improvement is not as great. Even
so, selective search of Gov2 handles four to five times the query
load of exhaustive search. As expected, Taily has better throughput
and latency than Rank-S for the majority of combinations tested.

That is, Figure 2 extends the findings of Kulkarni [4] to show
that total workload is lower in selective search than in exhaustive
search in a parallel query environment; and in addition also shows
that over a broad range of query loads, selective search improves
per-query response times as well, a win-win outcome.

Broker Load Balancing The difference between Rank-S and Taily
is a consequence of their approaches to resource selection [1]. In
Figure 2 only one machine acted as broker, and the shards were
evenly distributed across the two machines (B = 1, S = 2), match-
ing the configuration explored by Kulkarni [4]. However, this con-
figuration is not optimal for selective search, and in experiments
not reported here, we observed that an uneven machine load arises,
especially when using Rank-S.

The situation can be improved by employing more broker pro-
cesses. Figure 3 compares the previousB = 1 outcomes toB = 2,
that is, a configuration in which both machines perform resource
selection. The change results in a moderate gain in throughput on
Gov2, and a marked improvement in throughput on ClueWeb09.
The difference is due to the size of the corresponding CSIs. Rank-S
uses an approximately 1% sample of the corpus in the CSI, or about
half the size of the average Gov2 shard. But for ClueWeb09, the
CSI is eight times the average shard size, and a much greater frac-
tion of the search time is spent on shard selection. Taily requires
much less computation than does Rank-S, and the best setting was
B = 1. With M = 2 and B = 1, resource selection for Taily ac-
counted for less than 2% of m1’s processing capability. On the
other hand, sample-based algorithms have other advantages, in-
cluding the ability to run structured queries.

Shard Assignment With two machines (M = 2), random assign-
ment of shards to machines tends to distribute query traffic evenly
across machines, since there are many more shards than machines
(P � M ). That balance erodes as M increases, because selective
search deliberately creates shards that have skewed term distribu-
tions. In exploratory experiments, we observed that Rank-S applied
to Gov2 and the AOL queries results in the five most popular shards
accounting for 29% of all shards selected. The MQT query set dis-
plays a similar, but more moderate, skew.

The next experiment compares the Random shard assignment
with an alternative Log-based mechanism that uses training queries
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Figure 4: Machine workload fractions for Taily on Gov2, the MQT
test queries, and M = S = 4 and B = 1. Each point is the
mean over 10 sequences of 1,000 queries; error bars represent 95%
confidence intervals. The broker is on m1 in both configurations.

to estimate and balance the average load across machines [8]. The
training queries are evaluated via the resource selection process,
and for each shard, the sum of the postings costs computed and
used as an estimate of its workload. Shards are then ordered from
most to least loaded, and assigned to machines one by one, in each
case choosing the machine that currently has the lowest total esti-
mated load. Any remaining shards that were not accessed by the
training queries are assigned similarly, based on their size. In these
experiments a set of 1,000 training queries was employed. Using
Taily shard selection, Gov2 had no unaccessed shards for either
query set, and for the ClueWeb09 collection, 7% and 4% of shards
were unaccessed by the AOL and MQT training sets respectively.

Figure 4 shows the effect of shard assignment policy on the per-
host workload for M = 4 hosts using Gov2, with the vertical axis
showing machine utilization in the range 0.0–1.0. The wide spread
of loads in the left pane shows that the Random policy produces
an uneven utilization of machines, withm4 becoming a bottleneck.
In comparison, the Log-based policy (right pane) markedly reduces
the load variance, and allows higher query throughput rates to be
attained. When compared to ten other randomly generated shard
assignments, the Log-based policy remained the best performer.
Results for Rank-S are similar, and are omitted.

The risk of using Log-based allocations is that the learned at-
tributes may become dated as a result of query drift. Table 3 inves-
tigates this potential shortcoming by showing machine usage (de-
noted as loadi for machine mi) for three time-separated query sets
each containing 10,000 queries: one from immediately after the
training queries; a second from one week after the training queries;
and a third from one month after the training queries. Average uti-
lization is similar in each case, and variance increases marginally as
the query stream evolves, but the changes are generally small. Re-
sults for Gov2 one month after assignment have a markedly lower
utilization due to a burst of shorter queries that occurred at this time
(2.18 words on average versus 2.44 for the “straight after” query
stream), meaning that at any given arrival rate less total work is re-
quired. Shard assignments should be periodically revised to maxi-
mize throughput, but it is not necessary to do it frequently, and the
cost of refreshing shard assignments can be amortized.

4. CONCLUSION
Selective search is known to be more efficient than exhaustive

search in a single-query-at-a-time environment [4, 5]. We have
reproduced and extended those earlier findings using a simulator
that models realistic parallel processing environments. Our results
demonstrate that for some hardware configurations the selective
search architecture – resource selection followed by shard access –

Test Average loadi and range of loadi

avg. rnge. avg. rnge. avg. rnge.

Gov2 30 qry/s 40 qry/s 50 qry/s
immediate 0.59 0.20 0.73 0.25 0.78 0.26
one week 0.56 0.19 0.71 0.24 0.76 0.25
one month 0.47 0.20 0.62 0.26 0.72 0.30

ClueWeb09 2.0 qry/s 2.5 qry/s 3.0 qry/s
immediate 0.52 0.02 0.65 0.02 0.77 0.03
one week 0.51 0.02 0.63 0.02 0.75 0.02
one month 0.53 0.02 0.66 0.02 0.77 0.03

Table 3: Average loadi and range (max loadi −min loadi) as the
training data ages, using the Log-based shard allocation policy. The
query sets begin immediately after the training queries; one week
after the training queries; and one month after the training queries.

delivers both greater total throughput (number of queries processed
per time interval) and lower latency (faster response time) than con-
ventional approaches to distribution. We also investigated the ef-
fects of the resource selection algorithm, and found that Rank-S
usually resulted in higher latency and lower throughput than Taily.

Selective search uses topical shards that are likely to differ in
access rate. Typical random assignments of shards produce imbal-
ances in machine load, even when as few as four machines are in
use. We introduced a Log-based assignment policy using training
queries that provides higher throughput and more consistent query
processing times than random assignments. The Log-based assign-
ment is also resilient to temporal changes, and throughput degrada-
tion was slight, even after delays of a month.
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