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ABSTRACT
Fusion is an important and central concept in Information Retrieval.
�e goal of fusion methods is to merge di�erent sources of in-
formation so as to address a retrieval task. For example, in the
adhoc retrieval se�ing, fusion methods have been applied to merge
multiple document lists retrieved for a query. �e lists could be
retrieved using di�erent query representations, document repre-
sentations, ranking functions and corpora. �e goal of this half day,
intermediate-level, tutorial is to provide a methodological view of
the theoretical foundations of fusion approaches, the numerous
fusion methods that have been devised and a variety of applications
for which fusion techniques have been applied.

1 MOTIVATION
Fusion is a classic technique used for more than twenty years in In-
formation Retrieval, speci�cally adhoc (query-based) retrieval, that
allows multiple sources of information to be combined into a single
result set [32, 40]. Fusion can be collection-based, system-based (
multiple ranking algorithms), content-based, and even query-based
when many similar queries express the same information need [32].
�e real power of fusion comes from the fact that even simple aggre-
gation functions have the potential to provide enhanced retrieval
e�ectiveness by exploiting the chorus e�ect [96].

In this tutorial, we will show that advances in fusion are directly
applicable to current open problems in the Information Retrieval
community, and that much can be learned from these models as
machine learning becomes even more prominent in modern search
solutions. In particular we draw parallels between unsupervised
fusion and ensembles of classi�ers in supervised learning [36, 82,
116].

We focus on retrieval se�ings where a single corpus is used, and
di�erent factors that a�ect retrieval vary; e.g., queries used to repre-
sent the information need, document and/or query representations,
ranking functions, etc. We brie�y discuss the se�ing of retrieval
over several corpora (a.k.a., federated or distributed search [24, 90]);
speci�cally, we survey several state-of-the-art techniques for fusing
lists retrieved from di�erent corpora. We believe that federated
search deserves a tutorial in its own right which covers the three
main challenges: resource representation, resource selection and
results merging [24, 47, 90].
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Table 1: E�ectiveness comparison of three state-of-the-art ranking
methods for the most common query variation for each topic from
the ClueWeb12B UQV100 collection [10]. Here ‡ means p < 0.001
in a Bonferroni corrected two-tailed t-test.

Method NDCG@10 W/T/L

BM25 0.212 —/—/—
SDM-Field 0.233 57/3/40
LambdaMART 0.225 59/2/39
DoubleFuse, v=all 0.300‡ 80/1/19

Finally, it is important for everyone in the community to under-
stand just how e�ective simple fusion techniques can be. Figure 1
and Table 1 compare three state-of-the-art retrieval systems on 100
adhoc queries in the ClueWeb12B UQV100 collection. �e three sys-
tems being compared are BM25, a �eld-based SDM model [76] (the
exact con�guration is identical to the one described by Gallagher
et al. [42]), a LambdaMART learning-to-rank (LTR) model [23, 26]
(here lightGBM is used with 459 features), and double unsuper-
vised fusion [11, 18] (RRF [29] over all UQV query variations and
two systems - SDM-Field and BM25). Figure 1 shows the three
strong baselines as a di�erence in NDCG@10 score w.r.t. a BM25
bag-of-words run. We can clearly see that not only does fusion
make more queries be�er on average, as shown in Table 1, it is also
far less likely to make queries worse. �is can clearly be seen when
comparing Wins, Ties, and Losses (W/T/L) in the table. So, there is
much to be learned from fusion baselines when doing exploratory
failure analysis on the robustness of new ranking algorithms.

2 TUTORIAL OBJECTIVES
• Highlight the important role of fusion in Information Retrieval.
• Provide a methodological view of the numerous fusion methods.
• Provide an overview of the theoretical foundations of various

fusion approaches.
• Introduce the audience to various tasks and challenges for which

fusion has been applied and can be applied.
• Discuss parallels with, and more generally pointers to, rele-

vant, related work in machine learning and computational social
choice theory.

• Discuss open questions and challenges.
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Figure 1: Per topic breakdown comparison of NDCG@10 di�er-
ences of several state-of-the-art adhoc ranking techniques. �e
scores shown are the di�erence between the method and a simple
BM25 bag-of-words run. �e Double Fusion Technique uses all of
the query variations (v=all) for each of the 100 topics, uses RRF
Fusion, and combines two systems – SDM-Field and BM25.

3 FORMAT AND PLANNED SCHEDULE

Table 2: Half Day Schedule of Topics

Time Topic
9:00 - 9:15 Introduction
9:15 - 9:30 Historical Context
9:30 - 10:00 �eoretical Foundations
10:00 - 10:30 Fusion in Practice
10:30 - 11:00 Co�ee Break
11:00 - 11:20 Fusion in Practice (contd.)
11:20 - 11:45 Learning & Fusion
11:45 - 12:10 Applications
12:10 - 12:30 Conclusions & Future Directions

OUTLINE
• Intro and Overview
• Historical Context

– Social Choice �eory and Voting Schemes [20]
∗ Condorcet, Borda, Kemeny [13, 34, 115]

– TREC and Rank Fusion [40]
– Federated Search [24, 90]

• �eoretical Foundations
– �e Fusion Hypothesis [14, 31, 32, 56, 57, 81, 94]
– Classi�er Combination [93]
– Fusion Frameworks [3, 53, 55, 88, 96, 99, 100, 102]

• Fusion in Practice
– Score-based (e.g., [3, 40, 56, 57, 78])
– Rank-based (e.g., [11, 29, 38, 41, 77, 79, 80, 103])

– Retrieval Score Normalization and Rank-to-Score Transfor-
mations [4, 5, 29, 39, 57, 73, 74, 78, 104, 108]

– Content-based [15, 30, 49–51, 62, 64, 87, 91]
– Selecting Retrieved Lists for Fusion [43, 45, 46]
– �ery Variations [11, 16–18, 22, 28, 52, 113]
– Failure Analysis / Risk [18, 37]
– E�ciency Considerations [44, 59]

• Learning & Fusion [55, 88]
– Models over Permutations (e.g., [1, 38, 48, 54, 83])
– Supervised (e.g., [3, 55, 65–67, 85, 88, 89, 102, 105, 106, 110,

112]) vs Unsupervised (e.g., [6, 9, 29, 40, 107])
– Ensembles [36, 82, 116]

• Applications
– �ery Performance Prediction [7, 35, 75, 81, 85, 92, 95, 111]
– Diversi�cation [60, 63, 109]
– Relevance Feedback [8, 84]
– Selecting a Ranker [2, 12, 33, 58]
– Blog and Microblog Retrieval [60, 61, 64, 101]
– Pooling and Evaluation [8, 21, 25, 68–71, 86, 97, 98]

• Conclusions & Future Directions

4 TYPE OF SUPPORT MATERIALS TO BE
SUPPLIED TO ATTENDEES

• A Web page that contains all materials.
• Downloadable slides available in PDF format.
• Extensive bibliography that helps to further explore topics dis-

cussed in the tutorial.
• Scripts and source code for common fusion techniques that can

be used by PhD students in future work1.
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