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Formulating and processing phrases and other term dependencies to improve query effectiveness is an
important problem in information retrieval. However, accessing word-sequence statistics using inverted in-
dexes requires unreasonable processing time or substantial space overhead. Establishing a balance between
these competing space and time trade-offs can dramatically improve system performance.

In this paper, we present and analyze a new index structure designed to improve query efficiency in
dependency retrieval models. By adapting a class of (ε, δ)-approximation algorithms originally proposed for
sketch summarization in networking applications, we show how to accurately estimate statistics important
in term dependency models with low, probabilistically bounded error rates. The space requirements for the
vocabulary of the index is only logarithmically linked to the size of the vocabulary.

Empirically, we show that the sketch index can reduce the space requirements of the vocabulary compo-
nent of an index of n-grams consisting of between 1 and 4 words extracted from the GOV2 collection to less
than 0.01% of the space requirements of the vocabulary of a full index. We also show that larger n-gram
queries can be processed considerably more efficiently than in current alternatives, such as positional and
next-word indexes.
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1. INTRODUCTION
Term dependency models are a compelling new approach to improving effectiveness
in ranked document retrieval. A term dependency is any relationship between two or
more terms. Examples of term dependencies include noun phrases, verb phrases, or-
dered windows, unordered windows, spans of text, or any sequence of n-grams. Many
recently developed retrieval models depend on statistics extracted for dependencies
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between query terms [Metzler and Croft 2005; Lu et al. 2006; Bendersky and Croft
2008; Xue and Croft 2010; He et al. 2011; Broschart and Schenkel 2012]. While these
methods have been shown to significantly improve the effectiveness of the retrieval
model, little prior work has addressed how to efficiently generate the necessary statis-
tics at query time. Broschart and Schenkel [2012] present an efficiency and effective-
ness trade-off for proximity-based ranking algorithms. By selectively indexing terms
that co-occur within a fixed window length, Broschart and Schenkel are able to prune
the inverted files to include only co-occurrences above a pre-defined impact threshold,
thus controlling the space used by the index.

Several successful approaches to the problems of plagiarism, duplicate and local
text reuse detection also rely on phrase or word sequence features extracted from doc-
uments [Bernstein and Zobel 2006; Seo and Croft 2008; Hamid et al. 2009]. These
approaches all assume there is some significant redundancy in instances of duplica-
tion or reuse. They exploit this assumption by defining discard policies that reduce the
set of features extracted from each document. These policies reduce the total space re-
quirements and allow the system to efficiently retrieve duplicated text. However, they
each introduce the risk that vital features for some query document or passage may
have been removed by the feature discard policy.

In this paper, we focus on the problem of calculating document level statistics for all
word sequences (n-grams) in the collection in a space and time efficient manner, while
minimizing the risk that important features will be inaccurately stored. We will use
the term n-gram as any sequence of n sequential terms extracted from a document. We
select this terminology in order to avoid confusion with linguistic definitions of various
types of phrases and shingle extraction techniques. This type of positional term de-
pendency is often used as a surrogate for more complex, linguistic term dependencies.
Improving the efficiency of the calculation of this type of retrieval model feature can
improve the efficiency of all the retrieval models that use this type of term dependency.

There are existing approaches to storing and retrieving document level n-gram
statistics. For example, many current open source search engines provide access to
such positional information of terms in inverted indexes [Witten et al. 1999]. These
indexes support the calculation of n-gram statistics by processing n term posting lists
simultaneously, and comparing position offset information for each term in each docu-
ment. The space requirements for this approach are not substantial – usually a frac-
tion of the size of the collection. However, this approach to the query-time calculation
of n-gram statistics can result in inefficient query processing.

An obvious solution for improving the n-gram query processing efficiency is to con-
struct an inverted index of all n-gram term dependency data. This approach stores
a mapping for each term dependency to a posting list of documents and document
frequencies. Processing term dependency queries using this type of index is fast; the
inverted list for a query can be extracted and processed by direct lookup. However,
previous research has shown that n-gram can create extremely large vocabularies. For
example, about half of the 5-grams extracted from Clueweb-Part-B are unique in the
collection [Huston et al. 2011]. The size of the vocabulary is the main drawback of this
approach. By the nature of n-gram, each term in the collection occurs in n vocabulary
entries. In the worst case, the vocabulary component of a full index would require as
much as n times the storage required for the collection.

An alternative approach is to only store a subset of the n-grams. A frequent item
index [Huston et al. 2011] is one approach that uses significantly less space than a
full inverted index. As Huston et al. note, there are two possible execution modes for
this index structure. First, missing n-grams could be ignored. Second, missing n-grams
could be recreated using a positional index. The structure provides the guarantee that
any missing term dependency will occur in a limited number of documents. However,
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this subset of documents is likely to be relevant to the query. A different, dynamic sub-
set selection algorithm is to cache recently queried n-grams and phrases as an inter-
sected posting list [Ozcan et al. 2011]. This structure provides no guarantees about the
sparsity or utility of missing n-grams. Therefore, n-grams that are present in queries
but not in the index must be recomputed from a positional index or ignored.

Next-word indexing [Williams et al. 1999] was originally proposed as an attractive
trade-off between index space and retrieval efficiency for processing phrase queries.
A next-word index stores position data for all pairs of adjacent terms in the collec-
tion. Phrases are processed in a fashion similar to a positional index. The query is
segmented into a set of adjacent term pairs, and the posting list for each term pair
is processed in parallel. Positional data stored in each posting list is then used to de-
termine if the phrase is present in a document. We note that this structure is strictly
limited to processing phrase or n-gram queries. We will show that our new sketch in-
dex data structure is able to process larger phrase queries significantly faster than
next-word indexes. In follow-on work, Williams et al. [2004] investigate the time and
space trade-offs of indexing common phrases as a term, and using a next-word index
to resolve less common phrase queries. Assuming the correct phrases can be identi-
fied, the hybrid approach was shown to be significantly more efficient than traditional
phrase resolution using positional offsets. The idea of selectively indexing a subset of
term dependency components to improve efficiency served as inspiration for the ap-
proaches of [Huston et al. 2011] and [Broschart and Schenkel 2012]. However, these
approaches always result in selective index tuning in order to account for variance
across collections and query streams. Our new approach is designed to be robust and
efficient regardless of the query input.

In this study, we present an indexing structure using data stream sketching tech-
niques to estimate n-gram statistics. Our sketch index is derived from a COUNTMIN
sketch [Cormode and Muthukrishnan 2005b], and designed to minimize space usage
while still producing accurate statistical estimates. This strategy also ensures that the
space required by the index is independent of the number of indexed n-gram terms,
while still supporting efficient query processing. This work significantly extends and
analyzes the ideas presented in Huston et al. [2012].

Conceptually, our summary sketch is an (ε, δ)-approximation of a full inverted index
structure. So, the index representation is capable of estimating collection statistics for
a specific n-gram with bounded performance. We show that the relative error of ex-
tracted term dependency statistics can be probabilistically bounded and describe how
these bounds minimize the space requirements of the structure in practice. We estab-
lish that the retrieval efficiency of the sketch index is comparable to full indexes, and
notably faster than positional or next-word indexes. Finally, our experiments demon-
strate that our estimator does not significantly alter the query effectiveness when us-
ing current state-of-the-art term dependency models.

This paper is structured as follows: Section 2 presents the necessary background on
data stream sketching techniques; Section 3 presents the algorithmic framework for
our term dependency statistics estimator, and outlines the probabilistic error bounds
ensured by the representation; Efficient approaches to constructing the new sketch
data structure are discussed in Section 4; Section 5 evaluates the performance of our
new estimator empirically. We discuss future work in Section 6; and we conclude in
Section 7.

2. FREQUENCY-BASED SKETCHING
Algorithms for approximating the frequency of items in a collection or a stream have
advanced dramatically in the last twenty years [Cormode and Hadjieleftheriou 2008,
2010]. This line of research is based on the streaming model of computation, and has
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widespread applications in networking, databases, and data mining [Muthukrishnan
2005]. Much of the work in the networking community using these tools has focused
on identifying “heavy-hitters”, or top-k items (see [Berinde et al. 2009] or [Cormode
and Hadjieleftheriou 2008] and the references therein). If only the k most frequent
items must be accurately estimated, counter-based approaches work well in practice.
However, counter-based methods are generally not sufficient if estimates for all the
items in a stream are desirable since the number of counters is limited to the top-
k subset of items in the stream. For frequency estimation of any item in a stream,
various “sketching” methods are an appropriate alternative.

Here, we limit our discussion to sketching algorithms as these data structures are
able to bound the allowable error of approximation for all items in a stream. A sketch
is a hash-based data structure that represents a linear projection of the streaming
input. Two general approaches to sketching are present in the literature: AMS and
COUNTMIN.

The AMS sketch was first proposed by Alon et al. [1999] to estimate the second
frequency moment (F2), relative the collection size (|C|), with error ε

√
F2 ≤ ε|C| with

probability at least 1 − δ for a sketch using O( 1
ε2 log 1

δ ) bits of space. However, the
original representation of AMS is not efficient in practice since the whole sketch must
be updated for each new item.

To address this shortcoming, Charikar et al. [2002] proposed a modification that en-
sures each update only affects a small subset of the entire summary. Charikar et al.
[2002] refer to this approach as a COUNTSKETCH. The key idea of a COUNTSKETCH
is to create an array of r × w counters, with independent hash functions for each row
r. The hash functions map each update to set of counters, one in each row r. In addi-
tion, another independent hash function maps the value {−1,+1} to each update. This
approach ensures that collisions over the entire distribution are likely to cancel out.
Increasing the number of rows used (r) lowers δ. So, to match the same ε and δ bounds
of the AMS, the values r = log 4

δ and w = O( 1
ε2 ) are used. Using these parameters,

the space bound for the COUNTSKETCH is now identical to AMS, but update time is
reduced to O(log 1

δ ).
Another sketching alternative was recently proposed by Cormode and Muthukrish-

nan [2005b]. The COUNTMIN sketch is similar in spirit to COUNTSKETCH, in that the
method uses an array of r × w counters. The key difference is the omission of the sec-
ondary hashing function which maps {−1,+1} onto each update. Instead, COUNTMIN
always increments each counter. In streams which do not include deletions, this en-
sures that the frequency of any item f(i) in the sketch is an overestimate. The expected
number of collisions for i on any row is

∑
1≤i′≤σ,i′ 6=i f(i′)/w. COUNTMIN can be used

to estimate f̂i with error at most εn with probability at least 1− δ using O( 1
ε log 1

δ ) bits.
The time per update is O(r) where r = log 1

δ and w = O( 1
ε ).

An example COUNTMIN sketch is shown in Figure 1. When an item, i, is added to
or removed from the sketch, one counter is incremented or decremented in each row
of the COUNTMIN sketch. The correct cell is determined by the corresponding hash
function. Formally:

∀j<r : count[j, hj(i)] := count[j, hj(i)]± 1

If the stream contains only positive frequencies, the frequency of item i can be esti-
mated by returning the minimum count in the set.

âi = min
j

count[j, hj(i)]
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h1(1)
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Fig. 1. Example COUNTMIN Sketch containing frequency data for a stream of integers. Where the high-
lighted integer, 1, is hashed to each of the highlighted cells. The frequency of 1 in this stream is estimated
as the minimum value of the highlighted cells f1 = 3.

For streams allowing positive or negative frequencies, the frequency of i is estimated
by returning the median of the r counts.

âi = median
j

count[j, hj(i)]

In general, the ε-bound of the COUNTMIN sketch cannot be directly compared to the
ε-bound of the AMS sketch [Cormode and Muthukrishnan 2004]. The COUNTMIN
sketch provides bounds relative to the L1-norm, and AMS style sketches provide
bounds relative to the L2-norm. In practice, this is not a huge limitation, and both
sketching approaches have been shown to be effective and efficient for skewed data
collections [Charikar et al. 2002; Ganguly et al. 2004; Cormode and Muthukrishnan
2005a; Cormode and Hadjieleftheriou 2008].

Additional enhancements and applications of COUNTMIN have been proposed in the
literature. Conservative update, originally presented by Estan and Varghese [2002], is
a heuristic method used to improve the frequency estimates produced by COUNTMIN
by minimizing collisions. It operates by only updating the minimum set of rows in the
COUNTMIN sketch. Using this approach, the update function for each row j for the
event i becomes:

count[j, hj(i)] := max(count[j, hj(i)],min
k<r

(count[k, hk(i)] + 1))

3. SKETCHING STATISTICS FOR N-GRAMS
3.1. Inverted-Sketch-Index
Let C be a text collection partitioned into l documents {D1, D2, . . . ,Dl} containing at
most σn unique terms. Here, a term t can be an n-gram, a sequence of n adjacent
words. So, σ1 represents the total number of unique 1-grams in the collection. An in-
verted index, I counts the number of times each term t appears in each document Dj .
Conceptually, this can be represented as a σn × l matrix, M, as each indexed term t
may appear in any document mdocj . Figure 2 shows an example of the matrix repre-
sentation of an inverted index.
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D1 D2 D3 D4 D5 · · ·
t0 1 3 2 6 0 · · ·
t1 2 0 3 1 2 · · ·
t2 2 5 1 3 7 · · ·
...

Fig. 2. Example matrix representation,M, of a term-level, non-sparse inverted index, I.

The following notation will apply for our discussion:

— fd,t, the frequency of term t in document Dd;
— fq,t, the frequency of term t in the query;
— ft, the number of documents containing one or more occurrences of term t;
— Ft, the number of occurrences of term t in the collection;
— l, the number of documents in the collection;
— σn, the number of indexed terms in the collection (vocabulary size); and
— |C| =

∑σ1

i=0 Fti , the total number of tokens in the collection.

In practice,M is sparse, and each row in I is often stored as a compressed posting
list. An inverted index is a mapping of keys to a list of document counters. For each
document identifier j, fd,t is maintained. Traditionally, each term in the vocabulary is
stored explicitly in a lookup table.

...
t0 t1 t2 (D1, 1) (D3, 3) (D10, 2) · · ·
t0 t1 t3 (D2, 2) (D3, 5) (D4, 7) · · ·
t0 t1 t4 (D1, 1) (D6, 5) (D7, 1) · · ·

...

Fig. 3. Example n-gram inverted index. For each n-gram, a list of documents and document frequencies are
stored. Documents are sorted by identifier. If the n-gram is not present in a document, then the document
is omitted from the index structure. Integer compression techniques can be used to reduce the total space
requirements of the data structure.

Now, consider the case of constructing an inverted index of n-grams. The collection
C can contain at most (|C| − n + 1) distinct n-grams. This number is often less than
the σn1 possibilities, but still significantly larger than σ1, thus increasing the number
of potential rows inM. Figure 3 shows an example of I when using n-gram terms.

We investigate how to apply the ideas presented by Cormode and Muthukrishnan
[2005b] to fix the number of rows in M and still provide accurate statistical infor-
mation. Interestingly, l is already static for a given collection, and l � |C|. But, the
number of rows, σn, increases with n, and we would like to minimize this overhead.
Note that the total number of rows required in the sketch is proportional to r · ft. So, if
we reduceM to a linear projection of ft, we can use COUNTMIN to accurately approx-
imate f̂t. Recall that the expected number of collisions for t on any row in the sketch
is

∑
1≤t′≤σ,t′ 6=t ft′/w. Using a Markov inequality argument, Cormode and Muthukrish-

nan [2005b] show that by setting w = 2/ε and r = log 1/δ in the sketch, the estimate f̂t
is at most εF1 with probability at least 1 − δ, where F1 is the first frequency moment∑

1≤t′≤σn
ft′ , the sum of all of the frequencies. Note that this proof assumes that the

hash functions selected are from a pair-wise independent family of hash functions.
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h2(x)adventure time series

2-gram

1-gram 1-gram 1-gram

2-gram

3-gram

h2(x)

h1(x)

h1(x)

h1(x)

h2(x)

d1 fd,t d2 fd,t d3 fd,t d5 fd,t
d2 fd,t d3 fd,t d4 fd,t d5 fd,t
d1 fd,t d5 fd,t d6 fd,t d8 fd,t
d1 fd,t d2 fd,t d3 fd,t d4 fd,t

d2 fd,t d7 fd,t d8 fd,t d9 fd,t
d2 fd,t d3 fd,t d5 fd,t d6 fd,t
d2 fd,t d4 fd,t d6 fd,t d8 fd,t
d1 fd,t d3 fd,t d5 fd,t d7 fd,t

r1

r2

Fig. 4. Example index representation of a sketch index data structure composed of two rows, r ∈ {0, 1},
each hash function is required to be pair-wise independent, and returns values in the range [0, w − 1]. Note
that the postings lists in each row may contain hash collisions.

In a sketch representation of an inverted index, each distinct term is replaced with a
hash value where each hash value may represent more than one term. This reduction
means that the vocabulary of n-grams no longer needs to be stored with the index.
Figure 4 shows an example of our sketch-based indexing representation. If a simple
hashing representation were used, then there is no mechanism available to resolve
collisions unless each term string is accessible to the table. However, using the collision
mitigation strategy of a sketch, such as the method described for COUNTMIN, we are
able to reduce the probability that hashing collisions will result in incorrect results.

We note that it may be possible to use a perfect hash function to avoid collisions
entirely for this type of index. However, one of the key advantages of a non-perfect
hash function is that there is no requirement to retain the original vocabulary, thus
avoiding unrealistic space requirements. We leave the investigation of this type of hash
function to future work.

adventure time series

h1(x)

h2(x) d1 2 d3 3 d5 2 d6 5

d1 1 d2 1 d3 5 d5 8
3-gram

d1 1 d3 3 d5 2Final Posting List

Fig. 5. Example extraction of the statistics for a single term dependency in our sketch representation. The
first two posting lists represent the 3-gram, "adventure time series", extracted from the sketch using
the corresponding hash functions. The final posting list is simulated by intersecting r posting lists (in this
case, r = 2). Colors identify matching documents for each f̂d,t counter. The final posting list contains the
minimum f̂d,t from each matching document across r lists. For any document not represented in all r lists,
the minimum is assumed as f̂d,t = 0.
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Our new indexing structure is composed of an r×w matrix of pointers to r×w post-
ings lists. Conceptually, this matrix is equivalent to a COUNTMIN sketch designed to
estimate f̂t with one twist: we do not simply use a single counter to aggregate f̂t, but
rather allow multiple document counters attached in list-wise fashion to each cell in
the COUNTMIN sketch to form posting lists, as illustrated in Figure 4. These docu-
ment counters are then used to aggregate f̂d,t.

This approach allows us to fix the size of the lookup table independent of the order
of the n-grams being indexed. We do not attempt to fix the number of f̂d,t counters. As
in a standard inverted index, every term could appear in every document, producing
a maximum of l · |σn| counters in the worst case. But, in practice, the distribution is
skewed, and many terms have few non-zero f̂d,t counters. Note that since the width of
|σn| is fixed in our approach, the number of counters is largely independent of the order
of n, but rather some percentage of the counters are redistributed in the redundant
postings lists.

We now discuss how to estimate the frequency of a particular n-gram using our ap-
proach. By using the biased estimation of a COUNTMIN sketch of only positive counts,
our estimates of f̂t, and subsequently f̂d,t, are guaranteed to be an overestimate of the
true term counts. Furthermore, the same formal arguments using the Markov inequal-
ity and Chernoff bounds can be made for bounding f̂t, and subsequently f̂d,t, we could
reasonably expect for each cell. So, to estimate f̂t using COUNTMIN, we would take
minj count[j, hj(xi)]. But, each counter count[ ] is actually a pointer to a postings list,
containing approximately f̂t counters. When the posting list for any t is requested, r
posting lists are extracted and the intersection of the lists represents the minj of the r
postings lists. Figure 5 shows an example of the intersection process that represents
the minj for a given t.

This index is only intended to store and return document-level statistics, and to
enable the ranked retrieval of documents for an input query. The use of hashing func-
tions in the structure prohibit tasks that require vocabulary exploration. The proposed
structure also cannot store positional data for n-grams, prohibiting the use of the struc-
ture in common post-retrieval tasks such as snippet generation. It is also possible to
augment sketch-indexes to store positional data, but we do not explore this alterna-
tive here. The sketching techniques discussed here can be directly applied in a fre-
quent index [Huston et al. 2011] and in term-pair indexes as proposed by Broschart
and Schenkel [2012]. Currently, the vocabulary of the sketch index and single-hash
index are stored in memory with computed hash values used to index an array of file
pointers. It is also possible to store this table implicitly, by using a B+Tree to map
each hash value to the posting list data. This approach permits fine grained control
of the memory requirements of the structure, but may introduce additional disk-seeks
when executing queries. In future work we intend to investigate the best combinations
of sketch-indexes and other term selection techniques as well as other trade-offs in
managing the hash value mappings.

4. SKETCH INDEX CONSTRUCTION
Construction of an n-gram sketch index is similar to the construction of an inverted
index. Inverted index construction algorithms, as discussed by Witten et al. [1999],
require only minor modifications in order to be adapted to term dependency estima-
tor construction. The SORT-BASED SKETCH-INVERSION algorithm details one possi-
ble sort-based inversion algorithm to construct the estimator representation discussed
here.
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Algorithm 1: SORT-BASED SKETCH-INVERSION

Input: Text collection, C
Output: Inverted Sketch Index, IS
for each Dd ∈ C do

for each term dependency, tj ∈ (Dd) do
for k ← [1 . . . r] do

append (hk(tj),Dd, fd,tj ) to the output file Ok

end
end

end
for k ← [1 . . . r] do

sort Ok lexicographically
end
write the data from each row, (O1 . . . Or), to sketch index structure IS

In the simplest case, to generate an index of n-grams, a linear pass over the text
collection with a sliding window of size n is performed. Each of the r hash functions
are applied to each n-gram extracted to generate a set of r term-ids. The term-id data
for each row is sorted. Then the algorithm writes the sorted data directly to the sketch
index structure Ii.

The cost of constructing our term dependency estimator is therefore equivalent to
the cost of constructing an inverted index of n-grams with r repetitions. Specifically,
we can bound the cost of constructing a sketch index to O(r · |C| log |C|), as the set of
term postings must be sorted r times, once for each row.

Modifications can be made to any distributed term-level indexing algorithm, such as
the MapReduce indexing algorithm described by McCreadie et al. [2009], to produce
a sketch index structure. For example, the algorithm proposed by McCreadie et al.
[2009] would be modified by augmenting each key-value pair to include the id of the
sketch row as part of the key. The MapReduce key-value pairs, (t, posting-list-data), are
substituted with, ((rk, hrk(t)), posting-list-data). Then the map and reduce functions
are modified accordingly.

As sketch-based algorithms were originally designed for streaming data applica-
tions, the approach is also amenable to dynamic construction and maintenance of the
index. A fully dynamic version of the index can be constructed by applying the dynamic
indexing algorithms presented by Büttcher et al. [2010]. One approach is to maintain
an in-memory version of the sketch index as documents are added to the collection.
Periodically the in-memory sketch index is written to disk as an index shard. Index
shards on disk are periodically merged to control the total number of index shards. In
order to provide retrieval over the entire collection at any time, the posting list data
extracted from the memory-shard and each disk index shard are merged at query time.

5. EXPERIMENTS
5.1. Experimental Setup
We investigate the performance trade-offs of our new index structure using three
TREC collections: Robust-04, GOV2 and ClueWeb-B. Statistical properties for each
collection are shown in Table I. In each of our experiments, we measure index proper-
ties and retrieval performance on n-gram data. An n-gram is defined as any sequence
of n sequential words. In the literature, each distinct sequence is sometimes referred
to as a phrase, or a shingle. An n-gram can often used as an approximation of a more
complex linguistic term dependency.
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Table I. Statistics for TREC Collections Robust-04, GOV2 and
ClueWeb-B. Disk space is the space requirements of the uncom-
pressed collections. Collection length, document count and vocab-
ulary statistics are presented in millions (M).

Robust-04 GOV2 ClueWeb-B
Disk Space 1.9 GB 426 GB 1, 460 GB

Collection Length 252 M 23, 000 M 39, 800 M
Document Count 0.5 M 25 M 50 M

1-gram Vocab. 0.775 M 35 M 98 M
2-gram Vocab. 24.5 M 449 M 1, 370 M
3-gram Vocab. 95.1 M 2, 110 M 5, 960 M
4-gram Vocab. 166 M 4, 600 M 11, 600 M
5-gram Vocab. 204 M 6, 520 M 15, 800 M
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Fig. 6. Heaps’ law graph showing the vocabulary growth of n-grams extracted from the Robust-04 collection.

It is important to note that as n increases, the vocabulary size increases dramati-
cally. Figure 6 shows vocabulary growth rates for 1-to-5-grams for the Robust-04 col-
lection. This data clearly shows that there is an unreasonable space requirement when
storing the full vocabulary of n-grams for large collections.

A second important observation is that increasing n can have an affect on the skew
of the statistical distribution of terms in a collection. Figure 7 shows the distribution
of n-grams extracted from the Robust-04 collection. It is clear from this data that the
skew of an n-gram distribution decreases as n increases.

We compare the performance of our statistical n-gram estimator with four previously
proposed index structures capable of storing and returning document-level statistics
of n-gram term dependencies. We compare our approach with positional indexes, full
indexes of n-grams, frequent indexes, query-log-based indexes and next-word indexes.
We also compare the sketch index to a single-hashed index.

To ensure a fair comparison, all baseline index structures are implemented using the
same set of modern index compression techniques, including d-gap and vbyte integer
compression for posting list data, and prefix-based vocabulary compression for b-tree
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Fig. 7. Zipfian graph showing the distribution of n-grams extracted from the Robust-04 collection.

blocks. We use 32 kB b-tree blocks. Witten et al. [1999] provides a good description of
standard compression techniques amenable to text indexing and retrieval.

Positional indexes are a commonly used index structure that store a mapping from
each term in the collection to a list of documents, and the set of document positions
for the term [Witten et al. 1999]. The n-gram frequency data for each document can be
computed by comparing positional data for each term in the queried n-gram.

A full inverted index of n-grams stores a direct mapping from each n-gram in the
collection to an inverted list of documents, and associated document frequencies. Un-
like the positional index, the n-gram frequency data can be extracted directly from the
index with a single lookup, and requires no further processing. This approach repre-
sents one of the fastest methods of accessing pre-calculated statistical properties of
term dependencies.

Huston et al. [2011] propose a simple pragmatic approach: frequent indexes. This
type of index can be viewed as a subset of a full index of n-gram data. Only n-grams
that occur more frequently are present in the index. Using an appearance threshold,
h, selection can be done at indexing time, and may be collection dependent. The au-
thors suggest that the index should be used in conjunction with a standard positional
index of 1-grams in order to compute statistics of infrequent n-grams. For efficiency
experiments, we use a positional index to supplement this index structure.

We also test a second method of selecting a subset of n-grams to index, based on a
simulated query log. Using queries extracted from the AOL query log,1 we build an
index of recently queried n-grams. This method is analogous to the construction of
a cache of intersected posting lists [Ozcan et al. 2011]. After ordering the query log
by timestamps, we index all n-grams extracted from the first 90% of the AOL query
log. The remaining 10% is reserved to test the retrieval efficiency of each of the index

1http://www.gregsadetsky.com/aol-data/
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structures. Note that n-grams are extracted from each query, as if to be executed using
the n-gram retrieval models presented in Section 5.3.

Next-word indexes, originally proposed by Williams et al. [1999], store a positional
mapping for every word pair. The structure is divided into two files, a lexicon file and
a vector file. The vector file stores positional posting lists for every word pair found in
the collection. The lexicon file stores mappings from each word to a list of next-words
and vector file offsets, and the vector file stores all posting lists. The auxiliary data
structures in the next-word index can only be used for n-gram or phrase queries.

As a final sanity check and baseline, a singly-hashed index is also used. The single-
hash indexing structure is equivalent to a single row of the sketch index. Each indexed
n-gram is hashed to a b bit integer value. An index is constructed by associating each
hash value with a posting list. This structure is implemented using a hash-indexed
array of offsets into a file containing all posting lists. Recall that the likelihood of col-
lisions decreases exponentially with respect to the number of independent hash func-
tions used in any sketch-based data structure. Therefore, there is an implicit trade-off
in the number of hashes used and the bounded error rate. Our approach works with a
single hash or many hashes in a similar manner.

Our experiments focus on four key aspects of our new statistical term dependency
estimator: relative statistical error, retrieval effectiveness, disk and memory space re-
quirements, and retrieval efficiency. A key component of this study is the investigation
of the relationships between retrieval effectiveness, space requirements and retrieval
efficiency for the sketch index, in comparison to each of the baseline data structures.
We show that the sketch index provides valuable new trade-offs between efficiency,
effectiveness and space requirements.

In each experiment, ε and δ are reported for each sketch index. These parameters
determine the width and depth of the sketch used in the sketch index. The depth of
the sketch is determined as dlog 1

δ e. In these experiments, we focus on 1, 2, and 3 row
sketch indexes, specified by δ ∈ {0.5, 0.25, 0.125}, respectively. The width of the sketch
is determined as w = 2

ε . So, where ε = 2.9e− 06, the width of the sketch is 554,751 cells.
The width of the hash values required from the hash function, for this value of ε, is at
least dlog(554,751)e = 20 bits.

Each index structure we investigate in this section is implemented as an extension
to the Galago package, provided by the Lemur Toolkit [Croft et al. 2001-2012]. All
timing experiments were run on a machine with 8-core Intel Xeon processors, with 16
GB of RAM, running the CentOS distribution of Linux, using a distributed, network-
attached, 4-node Luster file system to store index data. We measure the CPU time
taken for at least 10 consecutive runs, and report the average in each experiment.

5.2. Estimation of Collection Frequency
As discussed previously, sketch indexes provide an attractive trade-off between space
usage and accuracy. In this section, we investigate the relationship between the (ε, δ)
parameters and the quality of approximation by comparing the relative error of our
approach to the true collection statistics. We show results computed on indexes created
over n-grams, extracted from the TREC Robust-04 collection. The Average Relative
Error (ARE) is defined as the average of the absolute difference between the true
value and the estimated value. In this case:

AREn =
1

|σn|
∑
t∈Tn

|Ft − F̂t|
Ft

,

where Tn is the set of all unique terms (n-grams) of size n and σn = |T |.
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Fig. 8. Average relative error of n-gram frequency statistics extracted from 10 instances of sketch indexes
over Robust-04 data, using each set of parameters. Sketch index parameters, (ε, δ), shown are ε ∈ {2.9 ·
10−5, 1.4 · 10−5, 2.9 · 10−6}, and δ ∈ {0.25, 0.125, 0.062}. Note
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Figure 8 shows AREn values grouped by Ft for several different n-grams using our
approach with a variety of parameters. Data shown in this graph is aggregated from 10
instances of sketch indexes with each parameter setting. The x and y axes are identical
for each graph, allowing direct comparison.

First, this data shows that conservative settings for (ε, δ) can ensure a low error rate
in the estimation of collection statistics. Additionally, we can see that using overly re-
strictive values of ε and δ can degrade our estimates, particularly for infrequent items.
This insight is not surprising, since summary sketching has primarily be applied in
networking scenarios that require only the top-k items in a set to be accurately es-
timated. This problem is referred to as the “heavy-hitter” problem in the literature.
Nevertheless, accurate estimates are possible using these approaches if conservative ε
and δ values are used.

The graphs also show the relationship between error rate and the skew of the in-
dexed data. Recall from Figure 7 that increasing n decreases the skew of the term
frequency in the collection. Figure 8 shows that as the skew of indexed data decreases,
ε must also be reduced in order to minimize the relative error.

In particular, we see that ε ≤ 2.9 · 10−6 and δ ≤ 0.062 produce a low relative error
for all n-grams tested in the Robust-04 collection. Relative error for other important
statistics including document count and document frequency for each n-gram were
also evaluated. The graphs showing error rates for these statistics are omitted from
this paper as the overall trends remain the same.

We now relate these observations to the theoretical bounds discussed previously.
Recall that the expected error rate is controlled by ε and δ. Taking an example from
our above graphs, we set ε = 2.9·10−6, and δ = 0.25. Theoretically the expected error for
this type of sketch is ε · |C| ≤ 735, for the Robust-04 Collection. We expect to see that
no more than 25% of estimated collection frequencies overestimate the true statistic
by more than 735. In practice, we obtain a much smaller observed error rate. In the
data collected and summarized in the ARE graphs for these parameters, no n-gram
collection frequency values are overestimated by 735. The largest overestimation of
the collection frequency of an n-gram, observed in this data, is 261. From this data, it’s
clear our observations do not contradict the probabilistic error bounds. The difference
between theory and practice here is that the theory assumes that each sketch cell, in
this case a posting list, just stores a single collection frequency value. By intersecting
the stored posting lists, we obtain a more conservative observed error.

5.3. Retrieval Effectiveness
We now investigate the effect of the use of sketch indexes on information retrieval
effectiveness. We focus on testing that sketch indexes can be used to store and retrieve
n-gram features for information retrieval without degrading retrieval effectiveness.
We seek to investigate if this data structure introduces a risk of compromised retrieval
effectiveness. For comparison, the relationship between hash-table size and retrieval
effectiveness for the single-hashed index is also evaluated in these experiments. All
the other benchmark index structures provide accurate collection statistics, thus they
are not specifically evaluated in this section.

Given that the indexes we are focusing on in this study are n-gram indexes, it is
appropriate to use an n-gram based retrieval model. We now define an n-gram retrieval
model using the Markov Random Field retrieval model framework [Metzler and Croft
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Table II. Details of TREC topic descriptions used for each collection for
retrieval effectiveness experiments.

Collection # of Queries TREC Query IDs # of Judgments
Robust-04 250 301 - 450, 601 - 700 311, 410

GOV2 150 701 - 850 135, 352

Table III. Example tuned parameters for each retrieval model for the GOV2
collection. Parameters shown here are tuned using 150 TREC description
topics for the GOV2 collection.

Retrieval Model Parameters (Λ) Values
sdm (λT , λO, λU ) (0.837, 0.102, 0.061)
n1-4 (λN1, λN2, λN3, λN4) (0.95, 0.11, 0.01,−0.07)

2005]. The n1-4 retrieval model is defined as:

Pn1−4(D|Q)
rank
=

∑
i≤|Q|

λn1 logP (qi|D)

+
∑

i≤|Q|−1

λn2 logP (#1(qi, qi+1)|D)

+
∑

i≤|Q|−2

λn3 logP (#1(qi, qi+1, qi+2)|D)

+
∑

i≤|Q|−3

λn4 logP (#1(qi, qi+1, qi+2, qi+3)|D),

where the model is parameterized using 4 weights (Λ = λn1, λn2, λn3, λn4), and qi is the
ith term in query Q. The #1 operator, originally defined by Metzler and Croft [2005], is
an ordered window operator, it matches instances of n-grams in each scored document,
and returns the number of matches found, where n is as the number of terms provided
to the operator.

To determine the retrieval performance of this model, we compare the n-gram re-
trieval model to two commonly used benchmark retrieval models, the query likelihood
model (QL) [Ponte and Croft 1998], and the sequential dependency model (SDM) [Met-
zler and Croft 2005]. We start by tuning the parameters for each model on each col-
lection. A summary of the TREC query and relevance data used in this experiment
is shown in Table II. For each TREC collection – Robust-04 and GOV2 – coordinate
ascent is used to tune query parameters, where mean average precision (MAP) is the
metric optimized. A example of the tuned parameter values used for this experiment
is shown in Table III. We omit the ClueWeb-B collection from these experiments due
to the exceedingly large space requirements made by constructing a large number of
indexes over a wide range of sketch parameters.

Since we use all available query and judgment data to tune each model, for each
collection, the observed retrieval performance is considered the oracle performance for
each collection. Observe that in these parameters, the weight for some of the longer
n-gram features are negative. During tuning we observed that a positive weight for
these features negatively impacts retrieval effectiveness. This observation implies that
an exact match between the query phrasing and a particular document is weakly cor-
related with the document not being relevant to the query. Bendersky and Croft [2012]
further discusses how negative-features can be incorporated into the Markov Random
Field model in this manner.

Table IV shows the oracle model effectiveness for each collection using the MAP,
nDCG20 and P@20 evaluation metrics. The n1-4 model shows significant improve-
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Table IV. Oracle retrieval effectiveness using MAP,
nDCG@20 and P@20 retrieval metrics. Retrieval models
shown include query likelihood (ql), sequential depen-
dence model (sdm) and the n1-4 retrieval model. Results
were produced using the Robust-04 and GOV2 collec-
tions. Significant improvements(+) over query likelihood
(ql) are computed using the Fisher randomization test
(α = 0.05).

Retrieval Model MAP nDCG@20 P@20
Robust-04

ql 0.245 0.390 0.333
sdm 0.262+ 0.412+ 0.352+

n1-4 0.260+ 0.410+ 0.348+

GOV2
ql 0.249 0.367 0.464
sdm 0.276+ 0.404+ 0.515+

n1-4 0.273+ 0.405+ 0.507+

ments over the query likelihood retrieval model for each retrieval metric, using
Fisher’s randomization test, (using α = 0.05). This statistical test does not show any
significant differences between the n1-4 model, and the sequential dependency model,
for each metric and each collection.

We now investigate the effect n-gram sketch indexes have on the effectiveness of the
n1-4 retrieval model. We explore the relationship between different sketch parame-
ters and retrieval performance (MAP). Sketch indexes used in this experiment each
contain statistics for all n-grams (1 ≤ n ≤ 4) in the collection. Other retrieval metrics
(nDCG@20 and P@20) were also evaluated, and similar trends were observed.

Figure 9 shows that retrieval performance (MAP) degrades as the ε parameter is
increased and the sketch table width decreases correspondingly. We can see that for
each value of δ, there is a threshold value of ε, below which retrieval effectiveness is
identical to the oracle. A summary of these threshold parameter settings is shown in
Table V. It is important to observe that the sketch parameters only need to grow sub-
linearly in the size of the collection. GOV2 is almost 1,000 times longer than Robust-04
(as measured by collection length), and we observe that sketch parameters grow only
sub-linearly, even while ensuring no change in retrieval effectiveness. Sketches of 3
rows are observed not to dramatically change the threshold settings. As such, we focus
on the 2 row sketch in the following experiments.

It is important to note that the n1-4 retrieval model used here is not the only re-
trieval model that can use sketch indexes to improve retrieval efficiency. There are a
variety of models that more selectively extract key concepts and other linguistic fea-
tures that contain 2 or more terms from queries [Bendersky and Croft 2008; Maxwell
and Croft 2013; Park et al. 2011; Xue and Croft 2010]. The efficiency of each of these
models could benefit from direct access to the n-gram statistics provided by the sketch
index. We use the n1-4 model in this study, as it provides similar retrieval performance
to a commonly used benchmark, SDM, without requiring term proximity statistics to
be computed from positional data. These experiments demonstrate that larger n-gram-
based features for retrieval models can be efficiently computed using this structure.

5.4. Memory and Disk Space Requirements
In this section memory and disk space requirements are evaluated for sketch indexes
over a variety of sketch parameters and across different collections. We then compare
disk and memory requirements to benchmark index structures.

Figure 10 shows memory requirements for a range of sketch parameters. Figure 11
shows the specific memory requirements of sketch indexes that maintain accurate re-
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Table V. Sketch parameters and the corresponding sketch table sizes. Observed
retrieval effectiveness (MAP) for each of the parameter settings in this table is
within 1% of observed retrieval effectiveness for the n1-4 retrieval model, using
oracle-tuned parameters.

Collection Delta Epsilon Sketch Width Sketch Depth
Robust-04 Single-hashed 7.3 · 10−8 27, 457, 393 1
Robust-04 0.25 3.6 · 10−6 554, 752 2
Robust-04 0.125 1.4 · 10−5 143, 067 3

GOV2 Single-hashed 8.1 · 10−9 247, 116, 529 1
GOV2 0.25 1.6 · 10−6 1, 235, 582 2
GOV2 0.125 8.1 · 10−6 247, 116 3
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Fig. 10. Memory requirements for a range of sketch index parameters. Note both x and y axes are in log
scale.

trieval effectiveness for the Robust-04 and GOV2 collections (see Table V). We observe
that the memory requirements for sketch indexes grows much slower than the single
hash index structure. If each sketch cell stores an 8 Byte file offset for the postings
data, the memory requirement for a sketch index of all 1-to-4-grams in the GOV2 col-
lection is just 19 MB. Over the same collection, using similar 8 Byte offset values, the
single-hashed index requires almost 2 GB of RAM. This data shows that the sketch
index is able to scale to large collections without introducing unreasonable memory
requirements.

Figure 12 shows the disk requirements of sketch indexes on the Robust-04 collection
for a range of sketch parameters. This data clearly shows that naive use of sketch
indexes can result in inefficient use of disk resources. Figures 13 and 14 show disk
requirements for sketch indexes compared to the disk requirements of the baseline
index structures for the Robust-04 and GOV2 collections. This data shows that the
sketch index uses significantly less space than the full index, but more than each of
the other baseline methods. The vocabulary data for a 2-row sketch index is less than
0.01% of the disk requirements of the vocabulary data for a full index of 1-to-4-grams
extracted from the GOV2 collection. However, the postings data stored in the same
sketch index grows by a factor of 1.2 over the postings data stored in the full index.
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This implies that the sketch index is most effective when storing the vocabulary data
is a large cost of the inverted index, as in an inverted index of term dependencies.

5.5. Retrieval Efficiency
We now evaluate the retrieval efficiency of our statistical estimator relative to the
other index structures for n-gram queries. For this experiment, we sample queries
from the AOL query log. The AOL query log consists of over 20 million unique web
queries that users submitted to the AOL search engine in 2006. In these experiments,
we execute queries on indexes of the ClueWeb-B collection. By using a web collection
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selected such that retrieval effectiveness is not compromised (see Table V).
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such that retrieval effectiveness is not compromised (see Table V).

to target the queries, no query translation methods [Webber and Moffat 2005] are re-
quired. We omit the single-hash index from this experiment, as it operates identically
to the full index structure.

The first 90% of the time-ordered query log is used to create the query log cache in-
dex structure. Test queries are sampled from the remaining 10% of the log. From this
subset of the query log, we uniformly at random sample 10, 000 n-grams extracted from
queries for each size, n ∈ {1, 2, 3, 4, 5}. The n-grams extracted from this query log rep-
resent a random sample of query features that are required to be computed for the n-
gram based retrieval model used in Section 5.3. We note that this sampling technique
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would also be appropriate for several other types of retrieval models. Several linguis-
tic and machine learned techniques segment or classify lists of terms extracted from a
query into potentially valuable phrases, windows, n-grams, and other dependent sets
of terms [Bendersky and Croft 2008; Bergsma and Wang 2007; Shi and Nie 2010].
These retrieval models each require collection statistics for all candidate n-grams or
candidate query term sets. Therefore, each of these models requires that index struc-
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tures provide access to statistics for any n-gram that may be queried, including the
ability to efficiently determine if the n-gram occurs in the collection.

The processing speed for each index structure over a each size of n-gram is measured
as the average of 5 timed runs of the corresponding sample of queries. To ensure the
order of extracted n-grams does not affect the results, the order of each run is random-
ized. The retrieval system is initialized for each experiment by running a randomly
selected sub-sample of 2,000 queries. This process ensures that a portion of the index
data is held in memory-based file buffers, as it would be in a live retrieval system.

Figure 15 shows query processing time as the length of the query increases for each
index structure. Note that times shown in this graph are displayed in log scale. All data
points in the graph are significantly different from each of the other index structures,
α = 0.05 for all pairs using the Fisher randomization test. This graph shows that the
query processing time of the sketch index data structure is significantly faster than the
positional, frequent, query-log and next-word indexes. Unlike position-based indexes,
we can see that the sketch index is scalable in the length of the n-gram, since as n
increases, the time to process n-gram queries does not increase with n.

The full index processes an average 4-gram in around 10 ms, while the sketch index
processes the same average 4-gram in 33 ms. The other index structures (positional,
frequent and next-word indexes) all process longer n-grams between 1 to 3 orders of
magnitude slower on average than the sketch index structure. In particular, sketch
indexes can be over 400 times faster than a positional index, and 15 times faster than
next-word indexes, for processing 5-gram queries.

Figure 16 shows the trade-off between query processing speed and space usage. Data
shown is the total space requirements to process 1-to-5-gram queries for each index
structure, and the average time to process all of the sampled queries used in the timed
experiments above. Query processing times are shown in log scale. Data structures
that provide the best trade-off will approach the origin - that is the query processing
time, and space requirements are minimized. This graph clearly demonstrates that our
n-gram statistical estimator offers a new and effective trade-off between space usage
and query efficiency compared with all other baselines.

6. RELATED AND FUTURE WORK
One of the key benefits of the sketch index structure examined here is that the size
and count of indexed items is only weakly correlated with the space requirements of
the index. This structure could be an effective structure to use when indexing more
general term dependencies, including the window-based proximity features used in
several term dependency retrieval models [Metzler and Croft 2005; Büttcher et al.
2006; Peng et al. 2007; Bendersky et al. 2010]. System space restrictions in our exper-
imental configuration have made the construction of full indexes of proximity-based
term dependencies for comparison infeasible at the current time. In future work, we
intend to investigate the application of this index structure to proximity-based term
dependencies.

Sketch indexes provide efficient access to n-gram features for information retrieval.
In this work, we proposed retrieval models that make use of all n-grams extracted
from an input query. There are several other information retrieval models and frame-
works that make use of n-gram features. In particular, linguistic and machine learn-
ing techniques can be applied to identify various subsets of all possible n-gram fea-
tures [Bergsma and Wang 2007; Bendersky and Croft 2008; Guo et al. 2008]. Retrieval
models based on these subsets have shown the potential to improve retrieval effective-
ness over models that use all possible n-grams of a particular size or pattern. Future
work will include the investigation of the effect of sketch indexes on other retrieval
models that make use of n-gram features.
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It is also important to consider how sketch indexes may be used in different query
processing models. MaxScore [Turtle and Flood 1995] is a well understood algorithm
to reduce the number of documents processed during the evaluation of a query. It op-
erates by estimating the maximum contribution from each of the query components,
and using this information to short circuit the scoring of each document, as compared
to the current top k documents. WAND, and related improvements [Broder et al. 2003;
Ding and Suel 2011] present an approach that only scores a document when the total
score is estimated to be higher than some threshold.

In order to operate efficiently, both of these algorithms require the estimation of
the upper and lower bounds for each query component contribution. Recently, several
new approaches to improving the estimation of the bounds for term dependency con-
tributions have been proposed [Tonellotto et al. 2010; Macdonald et al. 2011]. Sketch
indexes can provide direct access to a tight upper bound on term dependency statistics.
Therefore, the use of this index structure has the potential to dramatically improve the
effectiveness of each of these query processing algorithms over complex retrieval mod-
els. In future work, we intend to quantify any benefit gained from sketch indexes of
term dependencies on the processing of term dependency based retrieval models.

Sketch indexes can also be applied to multi-phase query processing models. The
cascade ranking model [Wang et al. 2011] incorporates the processing cost, in addition
to an estimate of the score contribution for each query feature when learning each
of the cascade’s ranking functions. As Wang et al. [2011] suggest, the learned query
processing model can delay the processing of slower query features until the document
set has been significantly reduced.

It is also possible to consider a simple two-phase query processing model. The first
phase scores each document in the collection using a bag-of-words retrieval model.
The top k documents are returned from this phase. The second phase scores each of
the the top k documents according to a more complex ranking function that includes
term dependency features. The output of the second phase is returned.

In both of these multi-phase query processing models, fast access to term depen-
dency statistics, as provided by sketch indexes, would allow term dependency features
to be used in the initial ranking function. This may allow a smaller initial set of doc-
uments to be processed first and thus the total query processing time can be further
reduced. The query processing time of the second and subsequent passes could also be
improved using sketch indexes.

Interestingly, phrase queries can also be resolved efficiently using a variety of suffix-
based indexing data structures collectively referred to as self-indexes [Navarro and
Mäkinen 2007]. These indexing structures have attractive worst case efficiency bounds
when doing “grep-like” occurrence counting in text. Fariña et al. [2012] show how to
extend these indexing structures to term-based alphabets. However, the basic self-
indexing framework does not directly address the document listing problem whereby
a listing of the documents containing the search pattern in some frequency ordering
is required. Muthukrishnan [2002] provided the first bounded approach to these and
other related counting problems using a document array. Subsequent research has
steadily progressed the time and space efficiency of top-k document retrieval using a
single search pattern (term or phrase) [Sadakane 2007; Hon et al. 2009; Culpepper
et al. 2010; Patil et al. 2011; Hon et al. 2012].

Unfortunately, the body of work surrounding top-k document retrieval using self-
indexes focuses primarily on singleton pattern querying in order to derive the best
possible efficiency bounds, and all use character-based instead of term-based vocabu-
lary representations which often results in indexes that are 2 to 3 times larger than
the text collection being indexed, all of which must be maintained in memory. Culpep-
per et al. [2011] investigated the viability of using a self-indexing configuration for
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multi-term bag-of-words querying using a BM25 similarity computation instead of
frequency-based ordering. Culpepper et al. [2012] extended these bag-of-words query-
ing capabilities to include term-based indexes and the pre-computation enhancements
of Hon et al. [2009] and Navarro and Valenzuela [2012]. They show that term-based
self-indexes with a variety of auxiliary data structures to support ranked document
retrieval are competitive with classic inverted indexes in both effectiveness and effi-
ciency.

Despite the advances in self-indexing, the approach is still hampered by two prob-
lems: the indexes must be entirely in memory; and index construction requires full suf-
fix array construction as an intermediate step. Suffix array construction is notoriously
memory hungry, requiring around 9 · |C| in-memory space for large collections [Puglisi
et al. 2007]. In summary, self-indexing approaches for ranked document retrieval are a
promising and active area of research, but current methods are limited by the amount
of physical RAM available, which translates well to only modest-sized document col-
lections in the IR domain. A variety of in-memory inverted indexing methods also
exist [Strohman and Croft 2007; Transier and Sanders 2010; Fontoura et al. 2011],
some of which attempt to selectively include phrasal components directly within the
index [Transier and Sanders 2008]. While all of these indexing approaches provide
compelling efficiency gains and can be constructed using significantly less memory
than current suffix-based approaches, physical memory limitations still bound the size
of collection that can be supported and were therefore not considered in this study.

Goyal et al. [2012] and Goyal and Daumé [2011] have proposed various sketch struc-
tures for use in a variety of natural language processing (NLP) tasks. An important dis-
tinction between these NLP tasks, and the information retrieval (IR) tasks discussed in
this study, is that these NLP tasks require collection level statistics to compute word-
pair association measures, such as point-wise mutual information, and log-likelihood
ratios. However, IR systems require document level statistics for use in document scor-
ing functions. Similar to results observed in our study, Goyal et al. [2012] observe new
trade-offs between space requirements and estimation accuracy using sketch struc-
tures. For example, they are able to sketch 75 million word pairs in around 80 MB of
memory, with minimal error [Goyal et al. 2012].

7. CONCLUSION
In this paper, we have investigated the problem of accurately estimating document
and collection level n-gram statistics in large data collections. Existing solutions for
this problem either require large amounts of disk space, or are inefficient for query pro-
cessing in practice. We have presented a novel approach to estimating n-gram statistics
for information retrieval tasks. By using frequency sketching techniques developed for
data streaming applications, we can accurately estimate collection and document level
statistics, and provide an attractive trade-off between space and relative error. Fur-
thermore, we show how to bound the space usage of the data structure. Importantly,
the number of distinct n-grams stored in the sketch is logarithmically linked to the size
of the sketch, allowing us to scale up to very large collections, as empirically observed
in experiments focusing on memory space requirements.

We have demonstrated that our approach is efficient in both time and space require-
ments, and can provide a low error rate for all of the statistics being estimated. Empir-
ically, we have shown that the sketch index can reduce the space requirements of the
vocabulary component of an index of 1-to-4-grams extracted from the GOV2 collection
to less than 0.01% of the requirements of an equivalent full index. We have shown that
sketch indexes can process queries considerably faster than both positional indexes,
and next-word indexes. Unlike frequent indexes and query-log cache approaches, our
method does not require an auxiliary index to calculate statistics for unseen or infre-
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quent n-grams. This new index representation provides an attractive alternative to
other state-of-the-art approaches depending on n-gram statistics for retrieval tasks.

The sketch index data structure provides a new and useful trade-off between query
processing time and space requirements for n-gram queries. Importantly, we also have
shown that this index structure is scalable in both query processing time and space
requirements for the size of the queried n-gram, n, and for the size of the collection,
|C|.

Finally, the index structures described encourage the exploration of n-grams as
query features. We have initiated this exploration through a simple n-gram based
retrieval model in this paper. Our retrieval model can be executed efficiently using
sketch index structures. We have empirically shown these models to be significantly
more effective than the query likelihood retrieval model, and not perform significantly
differently than the sequential dependence model. Furthermore, using the sketch in-
dex data structure, n-gram retrieval models can be executed more efficiently than po-
sitional index-based implementations of the sequential dependence model.
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