Finding Temporal Influential Users over Evolving
Social Networks

Shixun Huang ', Zhifeng Bao T, J.Shane Culpepper T, Bang Zhang !

tRMIT University, Melbourne, Australia

tDamo Academy Alibaba, Hangzhou, China

f{shixun.huang, zhifeng.bao, shane.culpepper} @rmit.edu.au, zhangbang.zb@alibaba-inc.com

Abstract—Influence maximization (IM) continues to be a key
research problem in social networks. The goal is to find a
small seed set of target users that have the greatest influence
in the network under various stochastic diffusion models. While
significant progress has been made on the IM problem in recent
years, several interesting challenges remain. For example, social
networks in reality are constantly evolving, and ‘“important”
users with the most influence also change over time. As a result,
several recent studies have proposed approaches to update the
seed set as the social networks evolve. However, this seed set
is not guaranteed to be the best seed set over a period of
time. In this paper we study the problem of Distinct Influence
Maximization (DIM) where the goal is to identify a seed set of
influencers who maximize the number of distinct users influenced
over a predefined window of time. Our new approach allows
social network providers to make fewer incremental changes
to targeted advertising while still maximizing the coverage of
the advertisements. It also provides finer grained control over
service level agreements where a certain number of impressions
for an advertisement must be displayed in a specific time period.
We propose two different strategies HCS and VCS with novel
graph compression techniques to solve this problem. Additionally,
VCS can also be applied directly to the traditional IM problem.
Extensive experiments on real-world datasets verify the efficiency,
accuracy and scalability of our solutions on both the DIM and
IM problems.

I. INTRODUCTION

Social networks are an increasingly important part of our
daily lives, and an increasingly important source of behavioural
data for research purposes. Understanding how information
spreads through a social network is a research problem that
has received a great deal of attention in the last decade.
Understanding this processes can provide insights in human
social structure, which can in turn be leveraged to provide better
targeted advertising. One popular strategy for viral marketing
is Influence Maximization (IM) [1], which is the problem of
finding a seed set of k target users such that the expected
number of users influenced by the target users is maximized
under a stochastic diffusion model.

The IM problem is known to be NP-hard [2], and many
approximation algorithms and heuristic methods have been
proposed over the years to tackle it [2]-[16]. These methods
obtain solutions based on the assumption that influence patterns
such as relationships among users are static. However, in
reality, social networks are constantly evolving over time [17],
[18]. Therefore, there are recent studies focusing on how to

1Zhifeng Bao is the corresponding author.

(a) Snapshotl (b) Snapshot2

(c) Snapshot3
Fig. 1: Three different stages of a social network.

support iteratively updating the seed set on a dynamic social
network [19]-[21].

Nevertheless, there are still important limitations in targeted
advertising which have not been considered by previous
literature. For example, several issues arise as the seed set
is updated in an evolving social network. (1) Users may
be repeatedly influenced by the updated seed set while the
number of distinct users who are influenced might be limited,
which constrains the effective user coverage of the influence
spread. (2) Advertising (ad) personalization is an important
marketing strategy beneficial for both customers and companies
[22]. Personalizing advertising messages is a resource-intensive
but important process for increasing revenues [23], customer
retention [24] and brand loyalty [25]. Due to the dynamic
nature of social networks, it may not be realistic to obtain
a seed set, redesign personalized advertising messages and
deploy them before the social network changes again over a
short period of time. (3) Repeatedly changing the seed set does
not maximize the effective frequency (the frequency level of ad
exposures required to drive consumer action) which is crucial
in marketing campaigns [26].

To mitigate these issues, we study the distinct influence
maximization (DIM) problem which aims to find a fixed seed
set of k target users to maximize the expected number of
distinct users influenced by the target users in an evolving
social network. Figure 1 is a simple example which contains
three snapshots, each representing a different stage of change
(for example three hours, three days, or three weeks) in a social
network. In this example, we say a target user x can influence
a user y if x can reach y in the graph (x can influence itself as
well). Note that influence spread estimation under the diffusion
model used in this paper makes the problem more complex.
Suppose we are required to find one target user. Previous
studies would select different users a, b and c as the target user
for the three snapshots since they can influence the maximum

number of users in that snapshot. More specifically, the same
set of users {a,b,c,d} are repeatedly influenced by the target
users a, b and c in different snapshots while users e and f are
not influenced. In contrast, the DIM problem aims to find a
common set of target users among these snapshots to maximize
the number of distinct users across all of the snapshots who
can be influenced by the common target users. For this case,
we would select user e as the target user since e can influence
all users {a,b,c,d,e, f} even if e may not have the highest
influence in an individual snapshot.

In this paper, we propose two strategies — the horizontal-
compression-based strategy (HCS) and the vertical-compression-
based strategy (VCS) — to tackle the DIM problem. To capture
the randomness of distinct influence spread under the stochastic
diffusion model, we randomly generate subgraphs from snap-
shots of the social network via Monte Carlo simulations, and
approximate the users’ distinct influence spread by averaging
their distinct reachability on these subgraphs. To mitigate
the issue of high memory usage incurred by the generated
subgraphs, our proposed strategies first compress the generated
subgraphs in different ways, and then find the target users on
the corresponding compressed graphs. Our main contributions
are summarized as follows:

o Motivated by realistic viral marketing factors, we formal-
ize the distinct influence maximization (DIM) problem
which aims to find a fixed seed set of k target users to
maximize the influence spread over distinct users in an
evolving social network (Section III). The DIM problem
is NP-hard and more computationally expensive than the
IM problem, which can be shown to be a special case of
the DIM problem.

o We propose two strategies called HCS and VCS to tackle the
DIM problem (Section IV). These two strategies compress
the generated subgraphs in different ways, and then
identify target users using the corresponding compressed
graphs. VCS is empirically shown to be superior to HCS
w.r.t. running time and memory footprint as it reduces
overlaps among the generated subgraphs, and can also be
applied directly to the traditional IM problem.

o We provide a complete theoretical analysis to show that
HCS and VCS obtain equivalent results, and the quality of
the solutions is theoretically bounded (Section V).

o We conduct extensive experiments on real-world datasets,
which shows that: (1) for the DIM problem, HCS and
VCS significantly outperform baselines extended from the
state-of-the-art methods for the IM problem in terms of
memory costs, while maintaining high-quality solutions
and high efficiency; (2) for the IM problem, VCS obtains
accurate results while providing good trade-offs between
running time and memory consumption (Section VI).

II. RELATED WORK
A. Influence Maximization in Static Social Networks

Kempe et al. [2] proved the NP-hardness of the influence
maximization problem and proposed a Monte Carlo simulation

based greedy algorithm to solve the problem. Their approach
iteratively selects nodes with the highest influence spread into
the seed set. In each iteration, the algorithm runs a large number
of simulations for each node to estimate the the influence spread.
Although this algorithm produces near-optimal solutions, it is
not efficient, which was the motivation in subsequent studies.
Despite significant progress, solutions that are both scalable and
accurate are still rare. We categorize existing approaches into
four classes: simulation-based, subgraph-based, sketch-based
and heuristic-based.

Simulation-based Methods. Leskovec et al. [3] adopted an
early termination technique CELF to reduce the number of
unnecessary estimates while achieving the same accuracy as
the greedy algorithm [2]. However, CELF does not improve
the worst case time complexity. Goyal et al. [4] proposed an
algorithm which further reduced the number of simulations
required, but in practice the new approach was not more
efficient than CELF empirically [27].

Subgraph-based Methods. SGDU [5] reused a small number
of subgraphs from the network that were generated with Monte
Carlo simulations to compute influence spread, which greatly
reduced the number of simulations needed. PMC [6] further
improved the efficiency of reusing the generated subgraphs by
transforming the subgraphs into acyclic graphs and introducing
additional pruning techniques. However, the scalability of PMC
remains limited due to the high memory costs of storing the
subgraphs.

Sketch-based Methods. Borgs et al. [7] proposed a strategy
to estimate influence spread by building sketches for randomly
selected nodes. For a selected node r, the sketch is constructed
via Monte Carlo simulations, and contains a reverse reachable
(RR) set storing nodes which can reach r in the sketch. This
strategy uses the classic greedy algorithm from the maximum
coverage problem [28] to select a seed set required to cover
the maximum number of RR sets. Subsequent studies such as
TIM [8] and IMM [9] have been proposed to lower the number
of RR sets required while still ensuring the same theoretical
bound. Sketch-based strategies are susceptible to high memory
costs as many RR sets may be required in order to achieve a
tight theoretical bound.

Heuristic Methods. Score-estimation methods [10]-[15] such
as EasylM [12] estimate the influence of a node by exploiting
the exponential decrease of influence probability w.r.t. the path
length. Alternatively, given an initial ordering of nodes, a rank-
refinement method such as IMRank [16] iteratively reorders
the nodes based on their computed influence spread until
the ranking converges. These heuristic methods can either
improve efficiency or reduce memory costs. However, the
solution quality is often reduced.

B. Influence Maximization in Dynamic Social Networks

In reality, social networks are constantly changing, and
so the relationships among people and influence patterns are
dynamic. Thus, there are recent studies focusing on how to
efficiently update a seed set in dynamic social networks. Chen

et al. [19] modeled a dynamic social network as a sequence
of snapshots and aimed to continuously extract seed sets for
each snapshot. Ohsaka et al. [21] proposed a fully dynamic
scheme which efficiently updates the seed set in real-time with
every node/edge update. Wang et al. [20] modeled dynamic
social networks as social streams and studied how to efficiently
update the seed set over the most recent social actions.

These studies differ from ours in the following perspectives:
(1) Updated seed sets versus fixed seed sets. Previous solutions
continuously update the seed set while we aim to find a
fixed seed set over a period of time in an evolving social
network. (2) Local maximum influence spread versus global
maximum influence spread. Previous solutions aimed to find
a seed set which influences the maximum number of nodes
at a particular instant in time — for example the most current
seed set in a dynamic social network. The primary goal in
previous work was to iteratively update the seed set based on
the current network configuration, while we aim to find a seed
set which influences the maximum number of distinct nodes
across multiple snapshots of an evolving network.

III. PROBLEM FORMULATION & PRELIMINARIES

We represent a social network as a directed graph G =
(V,E), where |V| =n and |E| = m. We say that node u can
reach node v if there exists a path from « to v in G, and we

denote reachability of u as the number of nodes u can reach.

A. The Diffusion Model & Problem Formulation

In this paper, we focus on solving our proposed problem
under a variation of the Independent Cascade (IC) model [2]
— a classic and widely-adopted information diffusion model.
The IC model originates from the marketing literature [29]
and independently assigns each edge (u,v) with an influence
probability p,, , — [0, 1]. The information diffusion instance
unfolds in discrete steps. Given an active seed set S in time
step 0, each active node u in time step ¢ > 1 will have a single
chance to activate each inactive outgoing neighbor v with a
probability of p,, ,,. If an outgoing neighbor v is activated in the
current step ¢, it will become active in step ¢t + 1 and then will
have a single chance to activate each of the inactive outgoing
neighbors in the next time step. Otherwise, the neighbor will
stay inactive. The information diffusion instance terminates
when no more nodes can be activated. The influence spread of
a seed set S in a graph G (denoted as o¢(.9)) is the expected

number of activated nodes when S is the initial active node set.

Given a graph G = (V| E), a positive integer k, the traditional
influence maximization problem (IM) under the IC model is
to find a seed set S* of k nodes such that

0c(S") = argMaXgscya|S|<k oc(9)

In this paper, we model an evolving social network as a
series of evolutionary stages, operationalized as a sequence
of snapshot graphs D = {G',G?,...,G"} as in [19]. The
distinct influence spread (p{S} of a seed set S is the
expected total number of distinct nodes (nodes with different
IDs) which are activated by S in all of the snapshots. We

simulate the diffusion process for .S on each of the snapshots
individually using the IC model, but nodes with the same IDs
across different snapshots are only counted once. We formally
define the distinct influence maximization problem as follows.

Problem 1 (Distinct Influence Maximization (DIM)).
Given a sequence of snapshots D = {G!,G?,..., G} of an
evolving social network, where G* = (V¥ E*) and 1 < i < w,
a common node set V, = f_ulei and a positive integer k, the

i=
distinct influence maximization problem aims to find a seed
set S* of k nodes such that

(p(S™) = argmaxgcy, a1s/<k (D (5)-

Note that since the traditional influence maximization
problem is NP-hard and is a special case of the DIM problem
when w = 1, the DIM problem is also NP-hard. We assume
that an evolving social network has numerous periodic patterns,
namely periodically recurring interaction patterns in networks
that change over time [30]. The evolution of social networks
is influenced by these periodic patterns, and patterns found in
the near past (e.g. in the last day/week) can be used to guide
future decisions.

B. Extension of Existing Methods to the DIM problem

To obtain the expected distinct influence spread of a seed set
S on multiple graphs, we need to consider every possible case
under the stochastic diffusion model. However, computing
the expected distinct influence spread is #P-hard, because
computing the expected influence spread on the traditional
IM problem is known to be #P-hard [13] and is a special case
of computing the expected distinct influence spread with a
window size w = 1. Instead, we can approximate the expected
distinct influence spread by simulating a number of (but not
all) possible cases under the stochastic diffusion model.

Heuristic methods on the IM problem either estimate the
influence spread of a node by using a function of the number
of simple paths starting at this node [10]-[12], or reorder the
nodes based on their ranking-based marginal influence spread
computed by exploiting influence probabilities of edges among
higher-ranked nodes and lower-ranked nodes [16]. Heuristic
methods are not easily amenable to the DIM problem since they
either do not use simulations, or “partially” probe a limited
number of paths.

The simulation-based, subgraph-based and sketch-based
methods are potential candidates for the extension since
subgraphs and sketches are both constructed via simulations.
Therefore, we construct our baselines using state-of-the-art
methods selected from these three categories.

C. Preliminaries

In this subsection, we will describe some preliminaries to
facilitate the illustration of our solutions and theoretical analysis
in Section IV and Section V.

A Greedy Strategy with Theoretical Guarantees. Kempe et
al. [2] proved that the IM problem is NP-hard, and proposed a
greedy algorithm with an approximation ratio of (1—1/¢) based

Notation Description
G* The ¢-th snapshot.
Gt The j-th subgraph generated from the snapshot G*.

i
D ={GT,...,G"} | A sequence of snapshots with the window size w.

S A seed set.

Za(9) The set of nodes which can be reached by S in G.
¢p(S) The expected distinct influence spread of S in D.
G;Lc The j-th horizontally-compressed graph.

G . The i-th vertically-compressed graph.

v.5B¢ The containment bitset of node v.

v.B7 The local containment bitset of node v.

v. Bt The traversal bitset of node v.

v.B" The recording bitset of node v.

TABLE I: Notations.

on the monotonic and submodular properties of o(-). Given
an influence spread function o(-) and a graph G = (V, E), we
say og(+) is monotone if and only if 05 (S) < 0¢(S’) for any
S C 8" CV, and submodular if and only if og(S U {v}) —
oc(S) > og(S'U{v}) —og(S’) for any S C S CV and
v € V\ 5. This greedy algorithm iteratively adds a node ¢
with the maximum marginal gain ¢ = arg max,cy\ g 0G(S U
{v}) — 6¢(S), into the seed set S until S is of size k, with
an approximation ratio of 1 — 1/e proven in Theorem 1.

Theorem 1: [28] If an influence function o is monotone,

submodular and o(()) = 0, then for a seed set S returned by
the greedy strategy, we have o(S) > (1 — 1/e)o(S*) where
S* is the optimal solution.
The Subgraph-based Strategy. To avoid a large number of
Monte Carlo simulations to obtain solutions of high quality,
follow-on studies [5], [6] focused on resolving the IM problem
on a small number of subgraphs randomly generated via Monte
Carlo simulations. A subgraph is generated by keeping each
edge (u,v) with probability p,, and removing each edge
(u, v) with probability 1 — p,, , from the original graph. With
Theorem 2, this strategy approximates the influence spread
of any seed set by estimating its average reachability on the
generated subgraphs with theoretical guarantees [6].

Theorem 2: [2] Given a graph G = (V, E) and a subgraph
G, randomly generated via Monte Carlo simulations, the
distribution D (S) over the sets of nodes activated by the
seed set S under the IC model is same as the distribution
D¢, (5) of the node set reachable from S in G.,.

IV. ALGORITHMS

As a corollary of Theorem 2, the distribution over the sets of
nodes activated by the seed set across different snapshots is the
same as the distribution of the node set reachable from the seed
set in the generated subgraphs of the independent snapshots.
Thus we can approximate the distinct influence spread of any
seed set by estimating its distinct reachability in the generated
subgraphs of these snapshots where the same nodes across
snapshots are only counted once in the reachability test.

In this section, we will optimize the subgraph-based strategy
to solve the DIM problem. We observe that the generated
subgraphs are memory intensive, and the efficiency of estimat-
ing reachability is sensitive to node and edge overlaps across

different subgraphs in the DIM problem. Thus, we propose
two strategies HCS and VCS respectively to compress these
subgraphs and conduct reachability tests on the compressed
graphs which eliminate node and edge overlaps.

A. The Horizontal-Compression-Based Strategy (HCS)

Suppose that we have a sequence of snapshots D =
{G',G?,...,G"} with their R generated subgraphs. Let
G3 denote the j-th subgraph generated from the snapshot
G'(1<j<R 1<i<w),and IG;‘ (S) denotes the set
of nodes which can be reached by the seed set .S in G; Let
the set of subgraphs {G;, G?, ..., GY} be the j-th horizontal
instance, an allowable combination of the subgraphs of each
snapshot. Then the average distinct reachability of a seed set
can be estimated on horizontal instances as the approximate
distinct influence spread such that:

)

To compute the distinct reachability of S in a horizontal
instance, a naive way is to obtain the sets of nodes reached by
S in each individual subgraph and perform union operations
over these sets to generate a set of distinct users who are
influenced by S. However, it is inefficient and incurs high
memory overhead when storing these subgraphs. In addition,
the overlapping nodes and edges across different snapshots
may be visited multiple times during the estimations, which
further decreases the efficiency. To mitigate these issues, we will
introduce the Horizontal Compression technique which compresses
subgraphs of each horizontal instance into one single graph,
followed by an algorithm which performs distinct reachability
tests directly on the compressed graphs.

1) Horizontal Compression: In the compressed graph, each
node (edge) is assigned with a containment bitset ‘B¢ storing
information about which subgraphs contain this node (edge).
Suppose we have a horizontal instance {G7, G?, LGP A L
j < R), an empty horizontally compressed graph G}, and
an empty containment bitset B¢ of size w where B[i] = 0
(1 < ¢ < w). We construct G by scanning each subgraph
iteratively. When we scan through G;, if an edge e in G; does
not exist in Gy, we add e into Gy, assign e with B¢ and
set e.B°[i] = 1. Otherwise, we update the existing e.5°[i]
in G to 1. Since the aforementioned process of generating
subgraphs only removes edges, every subgraph contains all
nodes in G regardless of connectivity. Therefore, we assign
a containment bitset for every node v in Gp,. such that all
bits in this containment bitset are set to 1. Eventually, G,
contains all nodes and edges appearing in the subgraphs of the
same horizontal instance and the overlaps are eliminated with
the assigned containment bitsets. For a bitset e.28¢ (v.28°), if
eBfi] =1 (wB°] =1) 1 <i < w), it indicates that the
edge e (node v) exists in G; Thus, the compressed graph G,
stores the information of nodes and edges in these subgraphs.

Figure 2 shows subgraphs G1, G2, G of the same horizontal
instance and their compressed graph Gp.. Note that all

@—0O—@ @—O—@—0
(b © ® @ @O
O@®O@® OO
Gi
@0
® O
D ©

@EOO®
Gi

Fig. 2: An example of three subgraphs and their horizontally
compressed graph.

th

disconnected nodes are placed together. Each node in Gp,.
has a containment bitset {111} not shown in Figure 2. For
each edge e in Gy, if e exists in Gi (1 <1 < 3), then
e.5°[i] = 1. For example, the containment bitset (c, d).5B€ is
{110} since the edge (c,d) exists in G} and G7.

Space Complexity Analysis. Regardless of influence prob-
abilities assigned to edges in snapshots {G',G?,...,G"}
where G = (Vi EY) (1 < i < w), we can construct a
merged snapshot G = (VM EM) guch that Vi C VM
and B C EM_ Recall the process of constructing subgraphs,
a subgraph contains all nodes and edges of the corresponding
snapshot in the worst case. Thus, a compressed graph of a
horizontal instance can have at most O(|V| 4 |E™|) nodes
and edges. Suppose that each containment bitset of size w uses
C. space. Then a horizontally compressed graph consumes
O((1 + Cyu)(|[VM| + |EM])) space in total.

2) Algorithms: Algorithm 1 describes the strategy of HCS
which conducts estimations on horizontally compressed graphs.
It consists of four main steps: (1) construct the compressed
graphs; (2) estimate the average distinct reachability of each
node in the compressed graphs using HCA (Algorithm 2); (3)
iteratively add a common node with the maximum marginal
gain w.r.t. the average distinct reachability into the seed set;
(4) update the compressed graphs each time a seed is selected.

In our proposed algorithm HCA (Algorithm 2), the estimates
on the horizontally compressed graphs aim to achieve the effect
of simultaneously performing breadth-first search (BFS) on
the subgraphs of the same horizontal instance. First, let us
introduce two data structures used in the compressed graph

G{Lc constructed from the j-th horizontal instance:

o Traversal bitset — Each node u in the queue to be
processed is assigned with a traversal bitset Bt. The
traversal bitset of u describes which subgraphs can
continue traversals from u. For example, if u.B*[i] = 1,
the subgraph Gé- can continue visiting outgoing neighbors
of u. No traversal will be allowed to continue from node
w if and only if all bits in u.2B! are 0.

Algorithm 1: The Horizontal-Compression-Based Strategy
(HCS)
Input :Snapshots G! = (V1 EY),...,GY = (V¥ Ev),
k and R (# of subgraphs).
Output : The seed set .S.
1 S, Dy = @;
2 for j=11t R do
3 Gic%(vffC:(Z)’Eiw:@)’
4 for i =1 to w do
5 ‘ generate subgraph Gj- to update wa ;
.)
7
8
9

Add Gj, into Dy,.

while |S| < k do

t + argmax,cy. HCA(Dpe,v);
S« Su{th

10 Update(Dy,.., t);

1 return S,

—

e Local containment bitset — Each reached node wu is
assigned with a local containment bitset B initialized
as u.5B¢. The local containment bitset B! of u describes
which subgraphs contain « but have not visited u. Note
that if G successfully visits u, we need to set u.Bl[i] = 0,
which makes sure that Gj cannot pass u again.

Note that traversal bitsets and local containment bitsets are
temporary data structures used for conducting estimations in
each individual compressed graph.

Next we describe how to assign the traversal bitset for
each node in the queue to be processed and update the local
containment bitset of each visited node in G .. We say that
node u can traverse to an outgoing neighbor node w if and
only if the result of bitwise AND operations among the u.%B",
(u, w). B¢ in G4, and w.B!, is not 0. This is true because we
can proceed with the traversal if and only there exists at least
one subgraph satisfying the following three traversal rules:

1) The value of the corresponding bit in B! of u is 1

(u.B'[i] = 1), indicating that G’ can proceed the
traversal.

2) The value (u,w).B°[i] = 1, indicating that G contains

edge (u,w).

3) The value w.B'[i] = 1, indicating that G contains w

and has not visited w yet.

The result b of the bitwise AND operations stores the
information about which subgraphs successfully traverse from
u to w, and it is also the updated traversal bitset assigned to
node w. If b is not 0, we update the local containment bitset
w.B! with b by changing the corresponding bits of successful
subgraphs to 0 (w.B! @ b). Afterwards, we push v and the
updated traversal bitset b onto queues.

GJ
We use the symbol u ~% w to denote that u can reach w in
G4, Given a sequence of snapshots D = {G*,G?,...,G"}
and their horizontally compressed graphs Ghoy-- s Gﬁc where
Gh.=1{V]..,E}.} (1 <j < R), HCA approximates the distinct
influence spread of a seed set S as follows:

Algorithm 2: HORIZONTAL-COMPRESSION-BASED AL-
GORITHM (HCA)
Input : G} ={V., El }, ...GE ={VE EE} and
node v.
Output : The average distinct reachability of v.
d<+ 0
for j=11t R do
if v.B¢ in G,
d+—d+1;
Q1 < a queue initialized with node v;
Q2 + a queue initialized with v.53¢ in G, ;
while @, is not empty do
u < dequeue from Qq;
Bt « dequeue from Qo;
foreach edge (u,z) € Ej _ do
if x is not visited in G;w then
‘ 2B« 2.8 in G{w;
b B! & (u,2).B¢ in G, & =B
if b # 0 then
if 2.98! = 2.98¢ in G, then
‘ d<—d+1;
2B — 2B Db,
@1 < enqueue the node x;
@2 < enqueue the bitset b;

0 then

D-TE--HEE B Y B N

T O = < =
o N NN R W N =D

[

o return d/R;

R
@(S)z%ZZl ©)

j=1 cond

. J

where cond is the condition that z € V;/, A3t € S, ¢ U .

Algorithm 2 shows our proposed method HCA. In each
iteration, a BFS on a compressed graph is performed. If the
bitset of the starting node v is not 0, we do the following
operations: (1) Increment the distinct reachability d since v
can reach itself; (2) Initialize two queues: ()7 that stores the
nodes to be visited and is initialized with the starting node v;
(2 that stores traversal bitsets of nodes to be visited and is
initialized with the containment bitset of the starting node v;
(3) Process each node in Q7 until ()7 is empty. In each step,
we dequeue one node u from ()7 along with its corresponding
traversal bitset from Q2. We check whether we can traverse
from w to its outgoing neighbors based on whether the value
of b (the updated traversal bitset) is not 0 (Lines 13-14). If not,
we update the local containment bitset of the neighbor, and
enqueue this neighbor with its traversal bitset onto the queues,
and increment the distinct reachability d if the neighbor has
not been visited (Lines 14-19); (4) When the BFS finishes, we
return the average distinct reachability (Lines 20).

To update the compressed graphs, we conduct a similar
traversal from the selected seed ¢ as HCA but update containment
bitsets ‘B¢ of the visited nodes instead.

Correctness Analysis. To prove the correctness of HCA, we
need to show that the result returned by HCA (Formula 2) is

equivalent to Formula 1.

Lemma 3: Given a horizontal instance {G}, G?, cee G;”}
and the compressed graph G7 ., if node u can reach node x in

G; (1 <% < w), then node u can reach node x in G{LC.

Proof. Recall the function of the traversal bitset. If we can
show that the updated traversal bitset B? has at least one bit
of 1 when we traverse from u to x along a path, we can then
prove that u can reach x in G7,. For each edge (a,b) to be
traversed, the traversal bitset B is updated by the bitwise AND
operations among the current ‘B¢ carried by a, the containment
bitset (a,b).B¢ in G4 and the local containment bitset B’
of b initialized as b.25¢ (refer to the three traversal rules).
There must exist a path p in G, such that z.8°[¢] = 1 and
e.B[i] = 1 for every node z and edge e along p, since node
u can reach node z in G; Considering that 2B8? is initialized
as u.2B¢ in G{w, the i-th bit of the updated B! must always
be 1 during the traversal from u to 2 along p for the first time.
Thus, « can reach = in G} .

Theorem 4: Given a sequence of snapshots D =
{G',G?,...,G"} each of which has R generated subgraphs,
the horizontally-compressed graphs G} ,...,GE and a seed
set S, the result returned by the HCA is the average distinct
reachability of S on these compressed graphs such that

1w 1 &
=35> 10 Ia@)I=5> > 1 O
j=1

7j=1 cond

. GI
where cond is the condition that z € V), A3t € S, t M .

Proof. As a direct corollary of Lemma 3, in the horizontally-
compressed graph G7 . (1 < j < R), the seed set S can reach
all the nodes reached by S in any individual subgraph of the
j-th horizontal instance. Since we only count each reached
node once in G, and estimations on all compressed graphs
are independent, Formula 3 is correct.

Time Complexity Analysis. As we mentioned before, given
snapshots {G',...,G"} and their merged snapshot GM =
(VM EM) a compressed graph can have at most O(|V)
nodes and O|E™| edges. The method HCA aims to estimate the
reachability of a node on each subgraph simultaneously. Each
compressed graph Gp, is constructed from w subgraphs and
the reachability test for each individual subgraph compressed
in Gj,. traverses at most O(|E|) edges. In addition, each
traversal involves a fixed number bitwise operations each of
which takes O(B) time. Thus, Algorithm 2 takes at most
O(RBw|EM|) time for R compressed graphs. Let m,,, be
the average number of edges of the sequence of snapshots.
Algorithm 1 takes O(Rwmy,,y) time to construct R compressed
graphs, calls the method HCA O(k|VM|) times and takes
O(REkBw|EM|) time in total to update the compressed graphs.
Hence, the total time complexity of the HCS strategy is
O(RBkw|EM||[VM| + Rwm,.,). Note that a distinct reacha-
bility estimation on a compressed graph costs much less than
O(Bw|E™|) empirically since there are often overlapping

subgraphs, and we can perform an edge traversal on multiple
subgraphs simultaneously in O(B) time.

B. The Vertical-Compression-Based Strategy (VCS)

Since the number of node and edge overlaps across subgraphs
generated from the same snapshot is more likely to be
greater than the one across subgraphs generated from different
snapshots, the memory costs can be further reduced if subgraphs
generated from the same snapshot are compressed instead. Sup-
pose we have a sequence of snapshots D = {G*,G?,...,G"}
and their generated subgraphs G; A1<j<R 1< < w).
Let the set of subgraphs {G}, G5, ..., G%} be the i-th vertical
instance. We can approximate the distinct influence spread of
S based on vertical instances as follows:

1 w R i
D)= 52D Ha(S) - U () @

i=1 j=1

Note that Formula 4 and Formula 1 are equivalent.

1) Vertical Compression: We adopt a similar compression
procedure as Horizontal Compression but Vertical Compression
compresses subgraphs of the same vertical instance into a
vertically-compressed graph G, and thus the size of the
containment bitset assigned to each node (edge) is same as the
size of a vertical instance.

Space Complexity Analysis. Suppose we have a sequence of
snapshots {G!,G?,...,G%} where G' = (VI,E%) (1 <i <
w), and the resulting R generated subgraphs. Since a vertically-
compressed graph is still a subgraph of the corresponding
snapshot, all vertically-compressed graphs can have at most
O(X,([V + |E?])) nodes and edges. If each containment
bitset of size R consumes O(Cg) space, all compressed graphs
consume O((1+Cr)(> i, (IVY| + |E*|)) space. Let mqyy =
L5 L IEY and ngyg = = 30, |V, then one compressed
graph uses O((1 + Cr)(navg + Mavg)) space.

2) Algorithms: The VCS strategy follows the four steps
which are conceptually similar to Strategy HCS, but VCS
constructs vertically-compressed graphs in the first step. We
omit the pseudocode due to space limitations. Algorithm 3
shows the main idea of our proposed algorithm VCA which
computes average distinct reachability based on vertically-
compressed graphs. VCA differs from HCA w.r.t. the following
four points: (1) results are obtained on vertically-compressed
graphs with reduced memory costs; (2) each visited node z is
assigned an extra data structure called a recording bitset ‘5".
We say v can reach z in a horizontal instance if v can reach
x in at least one subgraph of this horizontal instance. The
recording bitset of x records in which horizontal instances v
have visited = and is updated (line 17 and 19) by the result b of
bitwise operations mentioned previously (line 13). The result b
records which subgraphs of a vertical instance have successfully
visited x and each successful subgraph also belongs to a
specific horizontal instance. We use Count(x.B") to denote the
process of computing the number of such horizontal instances
(popcount); (3) an additional queue Q)3 is used to store the
visited nodes. After the main loops, we get the result by

Algorithm 3: VERTICAL-COMPRESSION-BASED ALGO-
RITHM (VCA)

Input : G};c = {Vvlcv E%c}a o Ge = {VJZ,E;”C}, and
node v.
Output : The average distinct reachability of v.

08", d + 0;
Qs < a queue initialized with node v;
for i =1 to w do

1
2

3

4 | 0B 0B |v.Bin G ;

5 @1 < a queue initialized with node v;

6 Q2 + a queue initialized with bitset v.98¢ in G¢ ;
7 while Q) is not empty do

8 u < dequeue from Q1;

9 Bt < dequeue from Qo

10 foreach edge (u,z) € E!_ do

1 if = is not visited by G!_ then

12 | 2B« 2.8 in Gi;

13 b« B! & (u,r).B¢in Gi , & z.B;
14 if b # 0 then

15 if x is not in Q3 then

16 Qs < enqueue the node z;

17 r.B" + b;

18 else

19 | B« z.B" |b;

20 w.B— wB P b,

21 @1 < enqueue the node x;

2 Q2 < enqueue the bitset b;

23 foreach node = in Q3 do
u | d<d+ Count(x.B");
25 return d/R;

averaging the sum of how many horizontal instances have
visited each node in ()3 (line 23 to 25).

Therefore, given a sequence of snapshots
D = {G',...,G"}, their vertically-compressed graphs
Gl,,...,G® constructed from w vertical instances, a
seed set S and a queue @ storing nodes visited by S in
vertically-compressed graphs, VCA approximates the distinct

influence spread of a seed set S as follows:

¢p(S) = % Z Count(x.B")
z€EQ

&)

To update compressed graphs, we conduct a similar traversal
from the selected seed ¢ as VCA but update containment bitsets
of visited nodes instead of their local containment bitsets.

Correctness Analysis. Since Formula 1 and Formula 4 are
equivalent, we can prove that VCA obtains the same result as
HCA if we can show that Formula 5 is equivalent to Formula 4.
, G} and
if node u can reach node = in G’

7
ve*

Lemma 5: Given a vertical instance {G, G5, . ..
the compressed graph G,
(1 < i < R), then node u can reach node x in G

Proof. The proof is similar to Lemma 3. If node u can

reach node = in G%, there must exist a path p in G, such

that z.8°[¢] = 1 and e.2B°[i] = 1 for every node z and edge
e along p. The updated traversal bitset B! has at least one
bit of 1 when we traverse from u to x along p, since B! is
initialized as «.®B¢ in G!_ and the i-th bit of the updated B?

must always be 1 during the traversal from u to x for the first
time. Thus, u can reach z in G¢ .

Theorem 6: Given a sequence snapshots
D = {G',G? ...,G"} together with their R generated
subgraphs, a seed set .S, and a queue () storing nodes visited
by S in the vertically-compressed graphs, the result returned
by VCA is the average distinct reachability of .S such that

w R 1
o(8) = 1 D03 1T (8) — VT (5)]

=1 j=1 (6)
1
== Z Count(x.B")
zeQ
Proof. For a horizontal instance {G},G?,...,G¥} (1 <

J < R), its subgraphs belong to w different vertical instances
and thus are compressed into w different vertically-compressed
graphs. Based on Lemma 5, after we conduct reachability tests
of S on all vertically-compressed graphs, the queue () stores
all the nodes which can be reached by S in any subgraph of
any horizontal instance. Recall that we introduce a recording
bitset B” for each node x reached by S in any vertically-
compressed graph. If the ¢-th bit of *B” is 1, it indicates that
some subgraphs of the i-th horizontal instance have reached x in
the corresponding vertically-compressed graphs. The recording
bitset B” only gets updated when some subgraphs of the
current vertically-compressed graphs reach nodes which cannot
be reached by the subgraphs of the same horizontal instances
but belonging to previous vertically-compressed graphs (line
19). By exploiting the recording bits of nodes stored in @), we
can know how many distinct nodes are reached in total, and
which nodes S can reach in each horizontal instance (line 24).
Thus, Formula 6 is correct.

Time Complexity Analysis. Suppose we have a sequence
of snapshots G* = (V1 El),... ,G¥ = (V¥ EY) each of
which has R generated subgraphs and their merged snap-
shot GM = (VM EM) Let ma, = L3 |F| and
Navg = = >+ |V?|. Each vertically-compressed graph G
is constructed from R subgraphs and the reachability test
for each individual subgraph compressed in G,. traverses
at most O(mgyy) edges. Each traversal involves a fixed
number of bitwise operations each of which takes O(B) time.
Thus, Algorithm 3 takes O(BRwmgyg) time. Strategy VCS
runs in O(BRkwmauy|VM |+ Rwmag.,) time, since it takes
O(Rwmgyg) times to construct the compressed graphs, calls
Algorithm 3 O(k|V™]) times and takes O(BRkwmg,,) time
in total to update the compressed graphs.

Space complexity comparison between HCS and VCS. Given
w snapshots and their R generated subgraphs, HCS consumes
O((1+Cy)(|VM|+|EM|)R) space and VCS consumes O((1+
Cr)(Navg+Mavg)w) space. HCS is more sensitive to R than w
as O(R) grows faster than O(C,,) in practice. Similarly, VCS is

more sensitive to w than R. If we assume that O(|[VM |+ |EM)
and O(ngyy + Mayg) are similar, then HCS will be smaller
than VCS if w > R. If high quality results are required and
R is large, VCS is the superior choice as w > R is rare in
many practical situations. Moreover, O(|[V M|+ |E™M]) is often
notably larger than O(ngug + Mavg) empirically. So cases
where HCS clearly outperforms VCS are uncommon.

Speed up techniques. To reduce the number of distinct reach-
ability estimations, we adopt the early termination technique
proposed by Leskovec et al. [3] and leverage the submodularity
property of the greedy strategy.

V. THEORETICAL PROPERTIES

According to Theorem 1, the greedy strategy in the traditional
IM problem which iteratively selects a seed with the maximum
marginal gain returns results with theoretical guarantees since
the influence function o(-) is monotone and submodular. In this
section, we will first prove the submodularity and mononicity
of the influence function () such that the greedy strategy
in the DIM problem is also theoretically bounded. Next, we
will prove that average distinct reachability on the generated
subgraphs of snapshots can approximate the distinct influence
spread. Finally, we will introduce a speed-up technique used
to improve the efficiency of our strategy.

A. Submodularity and Monotonicity

Theorem 7: Given a sequence of snapshot graphs D =
{GY,...,G"} where G = (Vi E%) (1 < i < w), and there is
a common node set V = HlVi, the influence function (p(-)

1=

is submodular such that:

(p(SU{v}) = (p(S) = ¢p(S"U{v}) = ¢p(S")
forany SC S’ CV.and v € (V. — 9).

Proof. As a corollary of Theorem 2, the distributions of the
set of nodes activated by a seed set S in the snapshots is same
as the distributions of the set of nodes reached by S in the
subgraphs randomly generated via Monte Carlo simulations
from these independent snapshots. Let a horizontal instance be a
sample point X which is one possible combination of subgraphs
Gk, ..., GY% randomly generated from these snapshots. Then

the set of distinct users activated by S in X is _BIIG& (S). Let
1=

(p(S, X) = 491IG3< (S) denote the distinct influence spread of

the seed set S under the sample point X. Then the expression
C(p(SU{v}, X) —(p(S,X) is the size of the set of distinct
nodes which can be reached by v but not by S. Thus, we have

Cp(S UL}, X) = ¢o(8.X) = | U Zg: ({o}) = U Zg: (5)]
Similarly, for the seed set S’, we have
Co(8'U{v}, X)=Co(5, X) = | U Zo, ((v}) = U gy (5)]

Since S C S' C V, then U Zgi (S) C U Ty ().
=1 X =1 X
Thus, we have

(p(SU{v}, X) = (p(S, X) = (p(S"U{v}, X) = (p(S', X)

Considering the entire space of all sample points, the set of
nodes activated by the seed set .S is computed by the weighted
average over all outcomes under different sample points, which
can be expressed as follow:

D

all samples X

(o(S) = Prob[X] - o (S, X)
Since a non-negative linear combination of submodular
functions is also submodular, the function {p(-) is submodular.
Theorem 8: Given a sequence of snapshot graphs D =
{GY,...,G"} where G' = (V{,E*) (1 < i < w), and the
common node set V, = ﬁ V', the influence function (p(-) is

=1

monotone such that:
(p(S) <¢p(S")
for any S C S’ C V..
Proof. For a sample point X, we have (p(S,X) =
’L_gll.G:iX (9), (p(9",X) = iglng((Sl). Since igll'gg((S) €
,,QIG& (S"), we have (p(S, X) < (p(S', X).

Considering the entire space of sample points, a non-negative
linear combination of monotone functions is also monotone.
Hence, the influence function {p(-) is monotone.

B. Theoretical Guarantees

In this section, we will prove the theoretical guarantees of our
strategies which use different but equivalent ways to estimate
the average distinct reachability as the approximate distinct
influence spread. First, let us introduce some key definitions.
Suppose S; is the seed set chosen after the i-th iteration (1 <
i < k). Let F; be the family of node sets for which HCS or VCS
estimates the average distinct reachability in the i-th iteration
such that Fy 1 = {S; U {v}|v € Zﬁlvi — S}, and F = iﬁlFi'

Lemma 9: [31] Let Yi,...,Y, be independent random
variables in [0,1] and Y = 1 3" | 'Y;. We have Prob[|Y —
Y| > t] < 2e72nt,

Theorem 10: Suppose we have: (1) a sequence of snapshots
D = {G',...,G¥} where G' = (VI,E") (1 <i < w); (2)
a merged snapshot GM = (VM EM); (3) a family of node
sets F; and (4) R = O(%(log|F| + log) sample points
(horizontal instances) X1, ..., Xg.

We have ((S) = (p(S) + €|VM]| with at least 1 — & proba-
bility for every S € F, where ((S) = & Zil ¢p (S, Xi).

Proof. Given a merged snapshot GM = (VM EM) we
have 0 < ﬁ < CD‘g,S,{flm < 1. Based on Lemma 9, we have
Prob[|C(S) — ¢p(S)| > e][VM]] < 2e72°R for a fixed seed
set S. Thus, for every S € F, we have

Prob[[C(S) = Co(S)| < e[V |] 21— 2¢72F ||

with the union bound [31] over all sets in F'. Thus, we obtain

the bound with R = O(%(log |F| + log $)). Given the node
set Vo = IFUW V?, we can equivalently set R = O(% (logk +

€

i=1
log |Ve| + log §)) to obtain the bound since |F| < k[Vz|.

VI. EXPERIMENTS

In this section, we conduct experiments for both the IM
problem and our proposed DIM problem where we construct
baselines by extending state-of-the-art solutions on the IM
problem, and show the competitiveness of our approaches.

A. Experimental Setup

Datasets We conduct experiments on five real-world datasets
NetHEPT, DBLP 2, Hyves, Flixster and LiveJournal 3, Table II
summarizes the characteristics of each collection.

Dataset V] [E]
NetHEPT 15K 59K
DBLP 654K | 2M
Hyves 1.4M 3M
Flixster 2.5M SM
LiveJournal | 52M | 49M

TABLE II: Basic information of 5 real-world networks tested.

Environments. We conduct experiments on a Linux server
with Intel Xeon E5 (2.60 GHz) CPUs and 512 GB RAM. All
algorithms are implemented in C++, and ran in a single thread.
Probabilistic Settings. We adopt two classical models — the
trivalency model which randomly assigns each edge with a
probability uniformly chosen from {0.1,0.01,0.001} [13], and
the constant model which assigns each edge with a constant
probability. Following previous work, we set the value to 0.1
or 0.01 [2], [12], [13], [32]. The trivalency model is used with
all of the test collections, and performance characteristics of
the algorithms are also shown for the constant model on the
largest dataset (LiveJournal).

Computation of Expected Spread. We adopt the comparison
methodologies for the IM problem used in previous work to
compute expected influence spread by performing 10K MC
simulations. The same technique is used to compute expected
distinct influence spread for the DIM problem.

B. Experimental Results for the IM problem

For the IM problem, we only show experimental results
on DBLP and LiveJournal due to space limitations. We see
similar trends in the other test collections. Additionally, only
results for LiveJournal using the constant model (0.01) can
be shown, and were the most interesting for this model. Note
that we do not include SGDU in experiments on LiveJournal
as it was unable to process a collection of this size due to
limitations in the reference implementation [5].

Algorithms & Parameter Settings. We compare our strategy
VCS with five state-of-the-art methods: two subgraph-based
methods SGDU [5] and PMC [6]; one sketch-based method IMM
[9]; two heuristic methods EasyIM [12] and IMRank [16]. Note
that we do not include simulation-based methods as they are
not competitive on large collections. We set all parameters
(shown in Table III) following the configurations prescribed in
a recent comprehensive benchmark for the IM problem [27].

Zhttp://research.microsoft.com/en-us/people/weic/.
3http://konect.cc.

. Parameter
Algorithm Description Value
VCS (our method) #Subgraphs 200
SGDU [5] #Subgraphs 200
PMC [6] #Subgraphs 200
IMM [9] The sampling error rate 0.05
EasyIM [27] The maximum length of influence paths 3
IMRank [16] The maximum length of influence paths 1

TABLE III: Parameter settings for the IM algorithms.

VCs IMM -&- PMC -4~ SGDU -e-

IMRank EasylM —--

1400 -
1200 -

12000 -
10000 -

o
S
S

5
£ 8000 -

2]
8 6000 -

@

[=3

Is)
|

=4
$ 4000 -

Influence Spread
©
o
o

N

o

S
|

Infl

2000 -
0

n
o
[S]

0 1o éok 30 40 50 0 1o éokéo 40 50

(a) DBLP (b) LiveJournal

Fig. 3: Comparison of influence spreads.

vVCSs IMRank IMM -~ PMC - SGDU -e- EasylM -

200 - = 100000

@

5180 B

=

2160 - 10000

= £

©140 - : <

g . &

z 5 120 X 1000 =

H [- >

F 12}

- 100 - - =
1 IE i I i [T I - + = 100

0 10 20 K 30 40 50 0 10 20k 30 40 50

(a) DBLP (b) LiveJournal

Fig. 4: Comparison of running time.

Influence Spread. Figure 3 compares the influence spread
achieved by all methods on DBLP and LiveJournal (1 <
k < 50). The approximation methods VCS, PMC, SGDU and
IMM produce almost identical results in all scenarios, with a
difference in influence spread between each pair of methods of
less than 0.001%. However, IMRank and EasyIM return results
of measurably lower quality than the other approximation
methods. Specifically, the influence spread achieved by EasyIM
on LiveJournal is 40% worse than VCS, PMC and IMM, and is
55% worse than IMRank.

Running Time. Figure 4 shows the running time of each al-
gorithm (1 < k < 50). Our proposed strategy VCS consistently
outperforms all baselines on DBLP but is outperformed by
IMRank on LiveJournal. The reason for this efficiency decay is
that during a reachability estimation, a node can be revisited if
its local containment bitset contains at least one bit of 1, and
the likelihood increases with graph size. It is worth noting that
the performance of IMM is not directly correlated with & or the
size of the dataset and IMM outperforms PMC on LiveJournal.
The performance characteristics of IMM is mainly determined
by 6, the number of generated RR sets, where 6 = %, A is
a function of k, and LB is a computed lower bound of the
optimal solution. Both \ and LB increase with k in IMM, and

100000

10000 ¢

IMM zz

1000

Memory [MB]

—
o
o

10

DBLP LiveJournal

Fig. 5: Comparison of memory consumption.

. Parameter
Algorithm Description Value
HCS (our method) #Subgraphs 200
VCS (our method) #Subgraphs 200
IMM [9] The sampling error rate | 0.05
PMC [6] #Subgraphs 200
CELF [3] #Simulations 10000

TABLE IV: Parameter settings for the DIM algorithms.

the value of # can increase or decrease as k increased on the
same dataset [9]. In addition, the value of 6 may be higher on
a smaller graph for a given k.

Memory Consumption. Figure 5 compares memory consump-
tion of each algorithm. Note that only the memory consumption
of IMM changes with k (shown as an error bar in Figure 5). It is
worth noting that all algorithms except IMM require significantly
more memory for LiveJournal than DBLP, while IMM uses a
similar amount of memory on both datasets. As mentioned
previously, IMM is highly sensitive to 6 which can be influenced
by many factors in addition to the graph size. Please refer to [9]
for a more detailed analysis of §. Among all approximation
methods, VCA requires the least amount of memory, and is
competitive with the heuristic methods EasyIM and IMRank.
Specifically, VCS uses around three orders of magnitude less
memory than the approximation methods PMC, SGDU and IMM,
and uses at least 50% less memory than IMRank.

C. Experiment Results for the DIM problem

Algorithms & Parameter Settings. We compare our strategies
HCS and VCS with three baselines extended from the state-of-
the-art simulation-based method CELF [3], the subgraph-based
method PMC and the sketch-based method IMM. Parameter
settings are described in Table IV. Note that we did not run
CELF on Flixster due to the prohibitively high computational
costs of the simulation-based strategy in a graph of this size.

Snapshot Construction. We construct snapshots iteratively
where the first snapshot is the original dataset. In each iteration,
we construct the current snapshot by updating the previous one
with a number of random changes and then re-assign influence
probabilities for all edges of the current snapshot under the
aforementioned trivalency model. More specifically, the number
of random changes is equal to 30% of total number of edges

VCS HCS - IMM -©- PMC -4 CELF -+

~
[=]
S
a

5000 -
o

8
54000 -

(2]

o

o

;
e S|

a1

o

Is)
'

©3000 -

N
[=3
1s)
}
n
o
=3
1S3

(5]
o
S
'
o
=3

Distinct Influence Spread

Distinct Influen

200

0

123 7 8 9 1o 123 456 7 8 910
Snapshots

(b) DBLP

4.5 6
Snapshots
(a) NetHEPT

Fig. 6: Comparison of distinct influence spreads (k = 50).

of the previous snapshot and a random change is either an
edge insertion or deletion.

Distinct Influence Spread. Figure 6 compares the distinct
influence spread of seed sets obtained by the five methods
where the number of involved snapshots ranges from 1 to 10
and k = 50. Methods VCS, HCS, IMM and PMC produce similar
results, and the small variations are caused by the randomness
in the Monte Carlo measurements. On the other hand, CELF
produces noticeably worse results but the accuracy may be
improved by increasing the number of Monte Carlo simulations
to estimate the influence spread.

Running Time. Figure 7 shows running time of each algorithm.
CELF is the least efficient, and is around three orders of mag-
nitude slower than HCS and VCS, and two orders of magnitude
worse than PMC. The prohibitively high computational costs are
caused by the requirement for a large number of Monte Carlo
simulations in order to estimate the distinct influence spread
of nodes across multiple graphs. PMC runs at most one and
two orders of magnitude slower than HCS and VCS respectively.
The relatively low efficiency is largely caused by the reduced
effectiveness of its speed-up technique when extended to the
DIM problem, and the costs of transforming subgraphs into
acyclic graphs. IMM is around one to two orders of magnitude
slower than HCS and VCS respectively on NetHEPT and DBLP.
The performance overhead is mainly a result of the RR sets
generated by individual snapshots, and the union sets of RR sets
generated by the same node in individual snapshots. However,
it outperforms PMC on Hyves and outperforms all methods on
Flixster. The performance analysis of IMM for the IM problem
also applies for the DIM problem.

It is worth noting that the difference between HCS and VCS
w.r.t. running time becomes smaller as the graph size increases.
VCS is more efficient since there exist more overlaps among
subgraphs of the same snapshot than the ones among subgraphs
of different snapshots, but the difference w.r.t. efficiency
between them is small in large graphs, which induce more
overlaps among subgraphs in different snapshots.

Memory Consumption. Figure 8 shows the memory con-
sumption of each algorithm. CELF requires the least amount of
memory since it only needs to store the original snapshots and
estimate the influence spread using Monte Carlo simulations.
Meanwhile, VCS requires an order of magnitude less memory
than HCS, and two orders of magnitude less memory than

HCS -

IMM - PMC -4 CELF -+

100000 =

&) %10000% 7 ;
g g : X

£ £ 1000 -
2 2 100G ,
£ £ 100 3
E I
> =3 -
[T 107 :
o T 1 o T R
1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10

Snapshots Snapshots
(a) NetHEPT (b) DBLP
100000 -+ e e
210000 -
o : :
£ . .
=

> 1000 3
£ W

£ H
c B <
=3 -
i R

6 7 8 9 10
Snapshots

3456 7 8 910 i 23 45
Snapshots

(c) Hyves (d) Flixster

Fig. 7: Comparison of running time (k = 50).

VCS HCS -« IMM -©- PMC -4 CELF =
10000 ¢ 1x108 ¢ -
100000 - S
) o . :
= =.10000@ -
> > A v
5] % S > x
£ : £ 1000 3
10 100W
1 28 6 do 105 5 3 57 8 80

4 5
Snapshots
(b) DBLP

3 4 5 6
Snapshots
(a) NetHEPT

100000 £

Memory [MB]
Memory [MBL.
=)
o
o

o
S
S

100

105 5 34 56 75 870 T2 054
Snapshots

45 6 7 8 910
Snapshots

(c) Hyves (d) Flixster

Fig. 8: Comparison of memory consumption (k = 50).

PMC and IMM in many cases. IMM requires more memory than
PMC on NetHEPT and DBLP but outperforms PMC on larger
datasets such as Hyves and Flixster. It is worth noting that
the growth rate of HCS is more stable than VCS and PMC
since HCS always stores a pre-defined number (i.e. 200) of
horizontally-compressed graphs no matter how many snapshots
are involved, and memory costs increase mainly due to non-
overlapping edges and nodes from new snapshots. On the
other hand, for each snapshot, VCS needs to create and store
a vertically-compressed graph, and PMC needs to create a
pre-defined number of subgraphs and store them separately.

Comparison between HCS and VCS. HCS is very sensitive to
snapshot overlaps while VCS is more robust as snapshot dif-
ferences do not influence graph compression in this technique.

VCS HCS ->¢

25+ ‘ ‘ ‘ ‘ Tt 1500
= =
& 20- o 180~ = 14509
© g g
E15- - 2170- &
= = - 1400
£10- - 2160~ g
5 2 - 13502
T 5- 5 5 150- o
g g

0: o 1405 " 50 4o 6 300

40 60 80
Edge Insertion Rate [%]
(b) Scalability Comparison

20 40 60 80
Edge Insertion Rate [%)]
(a) Efficiency Comparison

Fig. 9: Performance comparison between HCS and VCS.

To better show their sensitivity to differences across snapshots,
we compare the performance using two snapshots. The first
snapshot used is the original DBLP dataset, and a second one
is created by incrementally inserting 20% of the total number
of edges of the original snapshot. As shown in Figure 9, as the
edge insertion rate increases, the difference between running
time and memory usage grows notably.

VII. CONCLUSIONS

The Influence Maximization (IM) problem is one of the most
important fundamental research problems in social networks
and has many well-known applications. The IM problem is
NP-hard and many solutions have been proposed over the
years. However, there are important real-world limitations in

applications that have not been considered by previous literature.

To mitigate these limitations, in this paper, we proposed and
studied the Distinct Influence Maximization (DIM) problem,
which aims to find a fixed seed set of k target users to maximize
the expected number of distinct users influenced by the target
users in an evolving social network. To solve the DIM problem,
we approximate the distinct influence spread by estimating
the average distinct reachability on subgraphs generated from
snapshots of the social network. Due to the high memory costs
of the generated subgraphs, we proposed two strategies HCS
and VCS which compress the subgraphs in novel ways, and
then find target users directly using the compressed graphs. In
addition, we show that VCS can be used to efficiently solve the
classic IM problem. Extensive experiments were performed
on real-world datasets to verify the efficiency, accuracy and
scalability of our solutions for the DIM and IM problem.

ACKNOWLEDGEMENT

This work was partially supported by ARC DP170102726,
DP180102050, DP170102231, and NSFC 61728204, 91646204.
Zhifeng Bao is a recipient of Google Faculty Award.

REFERENCES

[1] P. Domingos and M. Richardson, “Mining the network value of
customers,” in SIGKDD, 2001, pp- 57-66.

[2] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in SIGKDD, 2003, pp. 137-146.

[3] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in SIGKDD,
2007, pp. 420-429.

[4] A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: optimizing the greedy
algorithm for influence maximization in social networks,” in WWW, 2011,
pp. 47-48.

[5]

[6]

[7]

[8]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

(30]

(31]

[32]

S. Cheng, H. Shen, J. Huang, G. Zhang, and X. Cheng, “Staticgreedy:
solving the scalability-accuracy dilemma in influence maximization,” in
CIKM, 2013, pp. 509-518.

N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi, “Fast and
accurate influence maximization on large networks with pruned monte-
carlo simulations,” in AAAI, 2014, pp. 138-144.

C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in SODA, 2014, pp. 946-957.

Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal time
complexity meets practical efficiency,” in SIGMOD, 2014, pp. 75-86.
Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD, 2015, pp. 1539-1554.

A. Goyal, W. Lu, and L. V. Lakshmanan, “Simpath: An efficient algorithm
for influence maximization under the linear threshold model,” in ICDM,
2011, pp. 211-220.

K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence
maximization in social networks,” in /ICDM, 2012, pp. 918-923.

S. Galhotra, A. Arora, and S. Roy, “Holistic influence maximization:
Combining scalability and efficiency with opinion-aware models,” in
SIGMOD, 2016, pp. 1077-1088.

W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in SIGKDD,
2010, pp. 1029-1038.

W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in SIGKDD, 2009, pp. 199-208.

W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in /CDM, 2010, pp.
88-97.

S. Cheng, H. Shen, J. Huang, W. Chen, and X. Cheng, “Imrank: influence
maximization via finding self-consistent ranking,” in SIGIR, 2014, pp.
475-484.

R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of online
social networks,” in Link mining: models, algorithms, and applications,
2010, pp. 337-357.

J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densifi-
cation and shrinking diameters,” TKDD, vol. 1, no. 1, p. 2, 2007.

X. Chen, G. Song, X. He, and K. Xie, “On influential nodes tracking in
dynamic social networks,” in SDM, 2015, pp. 613-621.

Y. Wang, Q. Fan, Y. Li, and K.-L. Tan, “Real-time influence maximization
on dynamic social streams,” PVLDB, vol. 10, no. 7, pp. 805-816, 2017.
N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi, “Dynamic
influence analysis in evolving networks,” PVLDB, vol. 9, no. 12, pp.
1077-1088, 2016.

P. Kotler and S. J. Levy, “Broadening the concept of marketing,” The
Journal of Marketing, pp. 10-15, 1969.
https://www.pwc.nl/nl/assets/documents/

pwec-leading- with-customer-focused-content.pdf.
http://www.adlucent.com/blog/2016/71-of-consumers- prefer- personalized-ads.
https://www.clickz.com/personalization-helps-amazon-prevail.
“Effective frequency: Reaching full campaign potential,” White Paper,
Facebook, July 2016.

A. Arora, S. Galhotra, and S. Ranu, “Debunking the myths of influence
maximization: An in-depth benchmarking study,” in SIGMOD, 2017, pp.
651-666.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions,” Mathematical
programming, vol. 14, no. 1, pp. 265-294, 1978.

J. Goldenberg, B. Libai, and E. Muller, “Using complex systems analysis
to advance marketing theory development: Modeling heterogeneity effects
on new product growth through stochastic cellular automata,” Academy
of Marketing Science Review, vol. 9, no. 3, pp. 1-18, 2001.

M. Lahiri and T. Y. Berger-Wolf, “Periodic subgraph mining in dynamic
networks,” Knowledge and Information Systems, vol. 24, no. 3, pp. 467—
497, 2010.

W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58, no.
301, pp. 13-30, 1963.

E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, “Sketch-based
influence maximization and computation: Scaling up with guarantees,”
in CIKM, 2014, pp. 629-638.

