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ABSTRACT
Reducing excessive costs in feature acquisition and model eval-

uation has been a long-standing challenge in learning-to-rank

systems. A cascaded ranking architecture turns ranking into a

pipeline of multiple stages, and has been shown to be a powerful

approach to balancing efficiency and effectiveness trade-offs in

large-scale search systems. However, learning a cascade model is

often complex, and usually performed stagewise independently

across the entire ranking pipeline. In this work we show that

learning a cascade rankingmodel in this manner is often suboptimal

in terms of both effectiveness and efficiency. We present a new

general framework for learning an end-to-end cascade of rankers

using backpropagation. We show that stagewise objectives can be

chained together and optimized jointly to achieve significantly

better trade-offs globally. This novel approach is generalizable

to not only differentiable models but also state-of-the-art tree-

based algorithms such as LambdaMART and cost-efficient gradient

boosted trees, and it opens up new opportunities for exploring

additional efficiency-effectiveness trade-offs in large-scale search

systems.
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1 INTRODUCTION
The complexity and breadth of new ranking models being de-

ployed in search engines continue to improve their effectiveness.

The most significant recent advances rely on multiple stages of

reranking using a combination of simple bag-of-words queries and

machine learning. This process is often referred to as Learning-

to-Rank (LTR) [4, 7, 21], and if multiple stages are employed,

it is referred to as cascade ranking [40]. As the complexity of
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algorithms being deployed continues to grow, so too do the

efficiency costs. Understanding the trade-offs between the two

competing goals of effectiveness and efficiency as collection sizes

increase remains an interesting and important problem in large

scale search applications.

Tree boosting algorithms such as LambdaMART [4] and Gradient

Boosted Regression Trees (GBRT) [15] are considered state-of-the-

art for many search tasks. Given the importance of these algorithms

in nearly every major search engine company, several recent studies

have focused on how to improve the scalability of these algorithms.

Examples include reducing model complexity via tree pruning [11,

25], traversal optimizations [16, 24], new data structures [23], and

cascaded ranking [8, 41]. External to the algorithms themselves,

approaches to improve efficiency include empirically constraining

the depth of the training data [27] and per-query cutoff prediction

during candidate generation [10, 29].

The theme of this paper is to expand upon our conceptual

understanding of trade-offs in complex cascade ranking archi-

tectures, by observing that scalable document scoring pipelines

can be made more efficient while still minimizing effectiveness

loss. Our approach relies on the fact that earlier stages will see

a full candidate list, but the majority of documents will not be

relevant, or even scored in later stages, and therefore a trade-off

has to be made between extracting cheap (or cost-efficient) features

early on, and maximizing effectiveness in the final stages of the

retrieval process. Therefore, different optimization criteria should

exist between individual stages to achieve the best outcomes. This

leads to the fundamental question of how to train a model such

that each stage is optimized over the subset of data that it is likely

to see, while also achieving a global minimization objective, such

as finding the best balance between efficiency and effectiveness

across the entire search process.

Based on these insights, we identify two key unresolved issues

in prior work: (1) Cost-aware approaches for LTR currently exist,

but do not generalize to a Cascade LTR (CLTR) architecture; (2)

Each stagewise ranker is trained independently to all of the others,

when in fact the decisions made by previous rankers directly impact

the performance of all subsequent rankings in the cascade. In this

regard, the work of Wang et al. [41] and Chen et al. [8] are closest

to our own, but neither address these two key limitations. So, we

explore both of these problems in this work, through the following

research questions:

Research Question (RQ1): How can loss be minimized in a CLTR
architecture such that both stagewise and global loss are optimized
jointly?
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Figure 1: Training phase of a 3-stage cascade. Cutoffs c1 = 6, c2 = 3

and c3 = 0. The candidate set of documents for a given query Q
enters ranker h1 that extracts features and reranks all documents (9

in this case) and outputs the top c1 documents. Rankerh2 receives c1
documents, performs feature extraction and reranking (swapping x1
and x5), and then outputs the top c2 documents. Ranker h3 reranks
the top c2 documents (swapping x2 and x3) resulting in the final

ranking, for which the global cascade loss L(H ;Q ) is computed.

As the final step, the error is backpropagated through the cascade

network to update stagewise weights for each ranker.

Research Question (RQ2): In a CLTR architecture, what is the
best way to perform cost-aware optimizations directly in a tree-based
learning algorithm during model construction?

Our Contributions. This paper has three major contributions:

(1) We propose a globally optimized cascade architecture and

introduce a novel method to jointly learn ranking models across

multiple stages in a cascade using backpropagation. This notifies

upstream rankers of the global error observed throughout the

entire ranking pipeline. In order to achieve this, we introduce

a smoothed approximation of a “gate-keeper” mechanism to

model the cascade globally.

(2) Building on insights from a new cost-aware algorithm designed

specifically for gradient boosting [33], we develop newmethods

for learning cascade models that do not require a retraining

step, a shortcoming of prior work on cascaded ranking.

(3) We show empirically that jointly learning cascade ranking

models leads to significant improvements on effectiveness and

efficiency trade-offs. Our approach offers new opportunities to

balance trade-offs in complex CLTR architectures.

2 BACKGROUND AND RELATEDWORK
Learning-to-Rank (LTR) in Information Retrieval is now a mature

problem, with many well-known techniques [21]. While there are

now many approaches that improve effectiveness in top-k web

search (Matveeva et al. [30] being one of the earliest for cascade

ranking, and Lucchese et al. [26] being one of the the most recent

for LTR), the issues around scalability and efficiency in machine

learning algorithms for multi-stage retrieval systems have only

recently become a point of emphasis. Among the earliest work

drawing attention to this problem was that of Cambazoglu et al. [5].

Other early work soon followed that explored performance trade-

offs in single stage reranking by focusing primarily on training and

feature extraction costs [1, 2, 27, 28].

A related line of research has focused on budget-aware learn-
ing [7, 18, 34, 43, 44]. The key intuition being that feature costs

should be directly integrated into the learning process. It is often

easy to confuse these two lines of research as they are clearly related.

But there are subtle distinctions between the two approaches. In

this work, we apply the lessons learned from multi-stage retrieval

directly to create new approaches to cascaded, budget-aware

learning.

Single Stage Cost Reduction. Several recent improvements

reduce prediction costs in a “single-stage” architecture, which is

the most commonly used configuration in the research literature.

DART incorporates the dropout technique that is well known

for regularizing the learning phase of a neural network [36].

During each iteration, a subset of neurons within the network

are deactivated in the current iteration, and the network continues

as if these neurons and associated edges do not exist. This has the

effect of helping the network to generalize, and not overfit. The

design of DART is optimized specifically for learning an ensemble

of boosted regression trees. A more recent algorithm X-DART [25]
extends the capabilities of DART, and integrates the tree pruning

capabilities of CLEaVER [22], which is a post pruning technique that

eliminates redundant trees in an existing model.

Another recent algorithm by Peter et al. [33] performs cost-

efficient gradient boosting (CEGB), which is a generalization of the

GreedyMiser algorithm [44]. CEGB, like GreedyMiser, incorporates

both tree evaluation and feature extraction cost as a penalty factor

when learning models that include an efficiency component in the

objective function. CEGB grows trees in best-first order, allowing

trees to expand in any leaf node so that a simultaneous comparison

of different leaves/features can be made when deciding the next

split. In this work we extend this key idea from CEGB, and exploit

it in our CLTR framework to directly learn a cascade of tree models.

Quality Versus Efficiency. A number of metrics designed specifi-

cally for analyzing the efficiency and effectiveness of systemswithin

the context of an LTR framework exist. Wang et al. [40] proposed

MEET – the mean efficiency and effectiveness trade-off metric.

MEET can be customized for specific application needs by using a

variety of different efficiency and effectiveness measures. Similarly,

Capannini et al. [6] proposed a measure called the area under the
quality cost curve (AuQC) which measures the effectiveness of an

LTR algorithm given a time budget. In this work, our cost model

depends primarily on feature extraction, and we therefore chose to

measure the average cost per document since feature extraction in

our current approach is performed at the document level. Further

reasoning behind this decision is discussed in Section 4.

Cascade Learning. Prior research also exists on cascaded machine

learning for IR and other closely related domains such as medical

science, computer vision, and e-commerce [14, 20, 41–43]. These



approaches generally assign different ranking models to each

ranking stage in order to collectively achieve a desired trade-off. The

earliest work on efficient cascade architectures designed specifically

for IR ranking tasks was from Wang et al. [41]. By generalizing

the AdaRank algorithm, the authors incorporate a cost model to

construct a cascade where each weak learner becomes a single

stage within the cascade. Other closely related approaches that

build on the cascade paradigm include the work of Xu et al. [43]

and Chen et al. [8]. Xu et al. proposed a GBDT-based cascading

model that reweights individual trees in a model using a pre-defined

cost objective. Chen et al. [8] use weighted ℓ1 regularization and a

linear model to incorporate feature extraction cost into the process

of feature learning, and then optimize individual stages in the

cascade using tree-based models derived from the features selected

by the linear model. All of the prior approaches apply cost-aware

learning and model optimizations stagewise but not globally. Our

new approach concurrently optimizes local stage objectives and

the global loss, while still accounting for execution costs.

3 APPROACH
A cascade ranking model is a sequence of machine learned rankers

chained together to collectively process a pipeline of documents.

Each ranking stage assigns scores to all documents entering the

stage, and then promotes the highest ranked documents to the

next stage. Different sets of features can be used across stages; for

instance, early stages may use more features that are not expensive

to compute (in time or other resources), whereas later stages may

use all of the features available. A cascade filters out documents in

the early stages, and the most expensive models are only applied

to a handful of documents, making it a cost-efficient strategy for

real-time ranking.

Cascade Structures and Ranking. Assume that every document

is represented as a d-dimensional vector x ∈ Rd , and let each

stage model hj : R
d → R be a function that receives a particular

“view” of a document as input, represented as a subset of features

whose indexes are Fj ⊂ {1,2, . . . ,d }. Then, a K-stage cascade is

represented as follows: ⟨(h1,c1), (h2,c2), . . . , (hK ,cK )⟩, with c1 >
. . . > cK = 0 being the respective rank position cutoffs. To

implement early exiting in the cascade, only the c j top-scoring
documents in stage j advance to stage j + 1 (if any). Note that cK is

set to 0 as no document can practically go beyond the final stage.

In cascade ranking, some documents will receive more than

one score estimate as they pass through multiple stages. Generally,

when document x enters a new stage j , a new score estimate hj (x )
will be generated. When all documents in stage j have received

new estimates, a cutoff threshold κj is computed based on the c j -th
top-scoring document:

κj = ⟨hj (x ) : h1 (x ) ≥ κ1, . . . ,hj−1 (x ) ≥ κj−1⟩[c j ]. (1)

Note that ⟨a⟩
[c] indicates the c-th element in sequence ⟨a⟩ in

decreasing order (and ⟨a⟩
[0]
= ∞). Documents with lower scores

than κj are not promoted to the next stage.

Given the stagewise scores and cutoff thresholds, document x is

said to be covered by stage j if it enters stage j but fails to advance

to stage j + 1. This property can be represented as an indicator

function I[x ∈ X j ], defined as follows:

I[x ∈ X j ] := I
[
hj (x ) < κj

] j−1∏
k=1

I [hk (x ) ≥ κk ] . (2)

To compute the final score H (x ), the cascade will make use of

all score estimates it has generated for document x . In this paper

we explore the following three types of cascade structures, with

detailed formulations given in Table 1:

• Independent-Chaining Cascade (ICC), where the final score
H (x ) is the last score estimate that document x receives. This

design assumes that the stage covering document x provides

the most accurate relevance estimate.

• Full-Chaining Cascade (FCC), where the final score H (x )
is the summation of all score estimates that document x
has received, based on the assumption that combining all

estimates leads to a more accurate estimation of document

relevance.

• Weak-Chaining Cascade (WCC), where the final scoreH (x ) is
the maximum from all of the score estimates that document x
has received. In this cascade structure, the stagewise models

focus more on optimizing a sparse, opportunistic set of

documents.

Risk Minimization. We use the principle of empirical risk mini-
mization [38] to learn a cascade ranking model. The empirical risk

is defined as:

R (H ) =
∑
Q

L(H ;Q ) + γC (H ),

where Q = ⟨(x1,y1), (x2,y2), . . . , (xn ,yn )⟩ indicates a query as

a list of (x ,y) pairs, with x being the document and y being

the relevance label. The ranking loss of L(H ;Q ) and the feature

extraction cost C (H ) are combined with the hyperparameter γ .
Similar loss functions have been used successfully in previous work

[8, 37, 41, 43].

The key idea we pursue here is to use backpropagation in order

to learn a combined ranking function across multiple stages of

a cascade simultaneously. This technique is now widely used

when building neural networking models, where it essentially

redistributes downstream errors back to upstream ranking models

by taking dependencies and relative contributions of individual

components into account.

To apply backpropagation in a cascade setting, we must first

derive the partial derivative of R (H ) with respect to stage model

configurationw j :
1∑

Q

∑
x ∈D (Q )

∂[L(H ;Q ) + γC (H )]

∂H (x )

∂H (x )

∂hj (x )

∂hj (x )

∂w j
. (3)

In this equation, D (Q ) denotes the set of documents in Q . Observe

that the ranking loss L(H ;Q ) is dependent on all document scores

and in turn linked to stagewise scores. These document scores are

not inter-dependent as κ values are computed on-the-fly based on

rank positions, rather than being a variable in the model. This can

be contrasted with Wang et al. [41] where score thresholds are

1
One further assumption is made here – the internal configurationw j of the stage j
model hj can be updated in a model-specific way using an iterative approach, such as

Gradient Descent for linear models, or Gradient Boosting for decision trees.



Table 1: An overview to the three proposed cascade structures

Cascade Score Function H (x ) Partial Derivative G j (x ) = ∂H (x )/∂hj (x )

ICC

∑K
j=1 I[x ∈ X j ]hj (x )

∂Ij (x )
∂hj (x )

(∑K
j′=j

I[x ∈X j′ ]

Ij (x )−I[j′=j]
hj′ (x )

)
+ I[x ∈ X j ]

FCC

∑K
j=1 I[x ∈ X j ]

∑j
l=1 hl (x )

∂Ij (x )
∂hj (x )

(∑K
j′=j

I[x ∈X j′ ]

Ij (x )−I[j′=j]
∑j′

l=1 hl (x )
)
+

∑K
j′=j I[x ∈ X j′]

WCC

∑K
j=1 I[x ∈ X j ] max

1≤l ≤j hl (x )
∂Ij (x )
∂hj (x )

(∑K
j′=j

I[x ∈X j′ ]

Ij (x )−I[j′=j]
max

1≤l ≤j′ hl (x )
)
+

∑K
j′=j I[x ∈ X j′]I[hj (x ) = max

1≤l ≤j′ hl (x )]

detached from rank cutoffs, which in turn may not reliably select

the correct number of documents entering individual stages in the

cascade.

Also observe that some elements within the inner summation

already have known formulations. The first component ∂[L(H ;Q )+
γC (H )]/∂H (x ) is the derivative of the empirical risk with respect

to the final score, which is dependent on the type of loss function

used (e.g. pointwise, pairwise, or listwise). Analogously, the third

component ∂hj (x )/∂w j , which is the derivative of the stage j score
with respect to its model configuration, is also model specific.

The key addition required to properly induce a cascade ranking

model is the second component, ∂H (x )/∂hj (x ), which is the partial

derivative of the cascade score with respect to the stage j score. For
each cascade structure, the respective partial derivative G j (x ) =
∂H (x )/∂hj (x ) is shown in Table 1. Putting all of this together, we

have the following descent update in iteration t with respect to

stage j in the model:

w
(t+1)
j = w

(t )
j − η

(t )
∑
Q

∑
x

G j (x )
∂[L(H ;Q ) + γC (H )]

∂H (x )

∂hj (x )

∂w j
,

(4)

Note that, when evaluating ∂H (x )/∂hj (x ), one caveat is that

when x = h−1j (κj ), the partial derivative is unbounded. This is

due to the discontinuity in the resulting derivative, caused by the

Dirac’s delta function δ [·] in the following equation:

∂

∂hj (x )
I
[
hj (x ) ≥ κj

]
= δ

[
hj (x ) − κj

]
. (5)

Removing the discontinuity can mitigate this issue, i.e. zeroing out

summations in Table 1 that involve (5). An alternative approach

which will be introduced next is to use a smoothed approximation.

Smooth Approximation for Indicator Functions. The stage-

wise update (4) suggests that, in each iteration, documents are

reassigned to the training sets of individual stage models according

to the valueG j (x ). But this reassignment is “hard” asG j (x ) involves
I[x ∈ X j ], and every document belongs to just one subset. As a

result, training instances are not shared across stages, and every

stage will see fewer documents than it should, which may lead to

under-fitting.

One possible solution is to soften the document assignment by

approximating the indicator I[x ∈ X j ] with a smoothing function.

For simplicity, we define Ij (x ) = I[hj (x ) ≥ κj ] and rewrite I[x ∈
X j ] as:

I[x ∈ X j ] :=
*.
,

j−1∏
k=1

Ik (x )
+/
-

(
1 − Ij (x )

)
.

The indicator Ij (x ) is essentially a step function with respect toh(x ),
and the approximation has a similar behavior without a sudden

leap from one extreme to another. This can be seen as assigning a

membership value to document x , indicating its strength during

gradient updates.

In this paper, we advocate approximating Ij (x ) with non-linear

activation functions widely used for neural networks, such as the

logistic function [19] and the ReLU function [32]:

I
(logistic)

j (x ) =

(
1 + exp

(
−
hj (x ) − κj

σ

))−1
, (6)

I
(relu)

j (x ) =
1

2

(
1 +min

{
1,max

{
−1,

hj (x ) − κj

δ

}})
, (7)

where σ is a scale parameter and δ controls how far off the “ramp”

is with respect to hj (x ) = κj . Note that, in (7), the ReLU function

is two-sided and its range is normalized between 0 and 1. Making

either approximation, the partial derivative ∂H (x )/∂hj (x ) would
no longer be a constant 0 or 1 but some value determined by

how far off the score hj (x ) is w.r.t. κj . Written as G̃ j (x ), this
approximated partial derivative will replace G j (x ) in (4), allowing

the update to incorporate the loss generated across all documents,

with each document-wise loss discounted differently according to

the approximated indicator value.

The main result (4) directly applies to models where all com-

ponents in the gradient (or the subgradient) can be explicitly

constructed. This includes differentiable models such as logistic

regression [37], and even ones with non-differentiable losses (e.g.

Hinge loss [8]). We omit these derivations due to space limitations.

Tree Cascades. Some further approximations are needed to apply

our result on tree-based models. In gradient boosted trees [9, 17,

33], a descent update for stage model Tj (represented by a set of

regression trees) is commonly written as:

F (t ) = argmin

F

∑
Q

(
L(T

(t )
j + F ;Q ) + γC (T

(t )
j + F )

)
.

T
(t+1)
j = T

(t )
j + η

(t )F (t ) ,

(8)

Following Burges [4] and prior work [9, 33], we first derive

the Newton step for the first component w.r.t. the node regions

R1, . . . ,Rn , while leaving the second component intact. Here, the

instance weight G̃ j (x ) is taken into account in the computation of

gradients and the Hessian:

F (t ) (x ) =
∑
i

*.
,

∑
Q

∑
x ′∈Ri G̃ j (x ) дQ,x ′∑
x ′∈Ri G̃ j (x ) hQ,x ′

+/
-
I (x ∈ Ri ) (9)



Algorithm 1 Gradient boosting with a CEGB model [33].

1: for j = 1,2, . . . ,K do
2: Make predictions using T

(t )
j to compute G̃ j (·).

3: Perform boosting update (8) and (9) to obtain T
(t+1)
j .

4: Inform stages j + 1, . . . ,K about new features in T
(t+1)
j .

5: end for

where Ri denotes the region covered by the i-th leaf node, дQ,x =

∂L(T
(t )
j ;Q )/∂T

(t )
j (x ) is the gradient, and therefore hQ,x =

∂2L(T
(t )
j ;Q )/∂T

(t )
j (x )2 is the Hessian of the first component.

This formulation is compatible with pointwise and pairwise loss

functions, including LambdaRank [4]. Note that when spawning a

new tree (i.e. deciding R1, . . . ,Rn ), the gradients, Hessian, and the

cost of introducing new features,C (T
(t )
j +F ) -C (T

(t )
j ), are all taken

into account, as indicated by Eq (12) in Peter et al. [33].

A revised stagewise gradient boosting procedure implementing

the final treatment is given in Algorithm 1. This procedure is

used in our experiments to optimize a set of cost-efficient gradient

boosting (CEGB) models [33]. When implementing the procedure

one needs to be aware of cost model updates hidden by the tree

construction process. In CEGB, the later stages must be informed

about any change in feature extraction cost in order to properly

function. Chaining together the stagewise cost models is a crucial

implementation detail for tree-based cascades.

4 EXPERIMENTS
We now examine the efficiency and effectiveness of the CLTR

architecture described in Section 3. We first detail the datasets and

evaluation methods for measuring both efficiency and effectiveness,

and then provide the details of the approach taken to assign feature

extraction costs for the datasets. An overview of the learning

algorithms employed follows next, along with configuration in-

formation for the baseline systems, and then we describe our new

cascade configurations. The remainder of the discussion centers

on the exploration of the CLTR architecture, and its benefits and

limitations relative to the baseline systems.

4.1 Experimental Context

Datasets. The Yahoo! LTR and MSLR-WEB10K collections are

used to conduct our reranking experiments [7, 35]. These datasets

are designed specifically for LTR tasks and a summary of these

collections is presented in Table 2. Set 1 of the Yahoo! LTR dataset

is used since it is the only official test collection which provides

feature extraction cost information [7]. However, the average

retrieval depth of 23.73 (across train, valid and test sets) does not

reflect a cascade configured for a production environment. The

MSLR-WEB10K collection has an average query depth that is much

deeper than Yahoo! S1, allowing for a more realistic simulation of

cascade learning, and arguably closer to a more realistic multi-stage

reranking environment.

Evaluation. To measure effectiveness we compute the early

precision metrics ERR and NDCG to depths 1, 3 and 5 using the

Table 2: Overview of the three datasets used for conducting the

experiments. The rightmost column shows the average query depth

for each collection.

Queries Total Docs Features Avg. Depth

Yahoo! S1 6,983 165,660 519 23.73

MSLR-WEB10K 10,000 6,000,960 136 120.02

gdeval tool2. RBP is computed using rbp_eval3 with a persistence
p = 0.5 also targeting early precision. These metrics and depths

were chosen due to the nature of the datasets used, and the assumed

operational scenario our research system might be deployed in –

large scale search tasks where only a few of the highest ranking

results are required. All significance testing is done using a paired

t-test with Bonferroni correction. Note that RBP was configured

to use graded relevance, and the residuals are omitted since all

documents in the two collections are judged.

Feature efficiency is computed as the average cost per document

throughout the entire pipeline. For single stage systems this is the

sum of the extraction costs of all features used in the model. For

cascade systems the feature extraction cost depends on the number

of documents entering each stage, and the features used in that

stage. Henceforth, the efficiency of a (cascaded) system is calculated

as:

C =
1

N

K∑
j=1



∑
f ∈Fj \(F1∪...∪Fj−1)

cost( f )


nj , (10)

where N is the total number of documents that enter the system,

cost(·) is the cost for extracting feature f from feature set Fj in
cascade stage j, and nj is the true number of documents scored in

cascade stage j (note the distinction from cutoff c j ). The calculation
of cost follows the assumption that once a feature is extracted,

any later stage that uses the same feature is able to do so with no

additional cost.

Cost Model. We follow Chen et al. [8] in that we do not account

for the cost of prediction execution for the learned models. Only

the feature extraction cost is included as the prediction cost is

negligible. If required by future approaches, it would be relatively

straightforward to include this cost using an efficient GBRT

implementation [23, 24], which have per document prediction costs

on the order of microseconds.

Cost Labels. Labeled feature costs are supplied as part of the Yahoo!
Set1 dataset. The cost labels for the 519 features are: {1, 5, 10, 20,

50, 100, 150, 200}. The MSLR-WEB10K does not provide feature

extraction cost information, although each of the 136 features

is documented
4
. Using this information and our own domain

expertise, we assign reasonable cost labels
5
to the MSLR-WEB10K

features by reusing the same set of cost labels from Yahoo! S1. The
goal of this process is to have feature extraction costs assigned in a

relative manner. Full details of the cost labels can be found in the

2
github.com/trec-web/trec-web-2013

3
people.eng.unimelb.edu.au/ammoffat/rbp_eval-0.2.tar.gz

4
microsoft.com/en-us/research/project/mslr

5
github.com/rmit-ir/joint-cascade-ranking

https://github.com/trec-web/trec-web-2013
https://people.eng.unimelb.edu.au/ammoffat/rbp_eval-0.2.tar.gz
https://microsoft.com/en-us/research/project/mslr
https://github.com/rmit-ir/joint-cascade-ranking


Table 3: Descriptions of the experimental and baseline systems.

The new systems ICC, FCC and WCC correspond to the scoring

functions in Table 1. LambdaRank loss is used across all tree-boosted

systems for tree construction.

System Description

LGBM-BL Ke et al. – Cost-insensitive single stage

baseline [17].

CEGB-BL Peter et al. – Cost-aware single stage

baseline [33].

LMartC3-BL Chen et al. – Cost-aware cascade with

independent stagewise optimization [8].

BM25F-SD Chapelle and Chang – Yahoo! S1 ranking
of test data by feature 637 [7].

BM25 Qin and Liu – MSLR-WEB10K ranking of

test data by feature 110 [35].

ICC Independent-chaining cascade with joint

stagewise optimization.

FCC Full-chaining cascade with joint stage-

wise optimization.

WCC Weak-chaining cascade with joint stage-

wise optimization.

GitHub project repository along with all of the necessary source

code to reproduce the results shown in this paper, and can be used

for future experiments on this problem.

Baseline Configuration. The top half of Table 3 describes the

baseline systems used for our experiments. LGBM-BL is a cost-

insensitive single stage model, and provides an upper performance

bound for a system that optimizes purely for effectiveness. Model

hyperparameters (trees, leaves, learning rate) were selected using

the provided validation set for Yahoo! S1 and via 5-fold cross-

validation forMSLR-WEB10K. Common parameters unless otherwise

noted for trees and learning rate selection are 2000 and {0.05,0.1}

respectively. Subsampling was set to 0.5, as this is a common choice

for the test collections used [6]. Early stopping was used to help

reduce model complexity and over-fitting. LGBM-BLwas configured
to use 31 leaves.

CEGB-BL is a cost-aware single stage system, where the balance

between efficiency and effectiveness is controlled using a hyper-

parameter λ. Our default baseline configuration of CEGB-BL uses
15 leaves as this was the recommendation by the authors for these

datasets in the original paper. The trade-off parameter for CEGB-BL
was set to λ = 10

−6
[33]

6
. For convenience, we also show results

when CEGB-BL uses 31 leaves, which was found to be the best

configuration for LGBM-BL. In general this custom configuration

is more effective, but also much less efficient, resulting in costs

that are generally quite close to the full LGBM-BL models in our

experiments.

LMartC3-BL is a 3 stage cost-aware cascade, and represents a

state-of-the-art cascade system. We configure LMartC3-BL as was
described by Chen et al. [8]. Note that we do not include results

6
Also based on recommendations from the authors

from Wang et al. [40] as their system is never better than LMartC3-
BL. We verified this claim using the reference implementations

provided by Chen et al. [8].

CascadeConfiguration. The remaining entries in Table 3 describe

our cascade systems. Threemodes for document scoring are detailed

in Section 3: independent, full and weak corresponding to systems

ICC, FCC and WCC respectively. We configure the cascade models

using the same parameter choices as the baseline configurations,

with the following notable differences that aim to articulate the

intuitive benefits of a cascade system.

The first stage is weighted to focus on efficiency by using λ =
10
−5
, and the number of leaves used in each stage is 15, except

the final stage which has 31. All reported cascades use the logistic

activation function with σ tuned over values {0.1,0.2, . . . ,0.5}. In

the interest of space, we omit results using the ReLU activation

function which were less effective.

Cascade hyperparameters such as the number of reranking

stages, documents promoted per stage, and the expressive power of

stagewise ensembles are important details. Simplifying assumptions

were made on a per dataset basis to fix the number of cascade stages

and per stage cutoffs. For Yahoo! S1 3 stages with cutoffs ⟨10,5,⊥⟩

were used, and forMSLR-WEB10K 4 stages with cutoffs ⟨40,20,10,⊥⟩

were used, where ⊥ signifies the absence of a cutoff. In practice the

final stage only scores the documents that it “sees” to attain the

final ranking. A per-query cutoff selection mechanism similar to

the one described by Mackenzie et al. [29], Mohammad et al. [31],

could yield a CLTR that is better able to optimize efficiency and

effectiveness during feature extraction. We leave this exploration

as future work.

4.2 Collection Comparisons

Yahoo! LTR Experiments. The Yahoo! S1 dataset contains a large
number of shallow queries which somewhat limit its ability to fully

benefit from a cascading system. However, it is currently the only

LTR dataset (that we are aware of) to provide feature extraction

costs, making it a valuable resource for our experiments. Results for

Yahoo! S1 can be found in Table 4. Included for reference is a ranking

of the test data by BM25F-SD (feature 637) [3, 7]. Unsurprisingly,

the cost-insensitive baseline LGBM-BL is the overall winner in

terms of effectiveness with CEGB-BL (31) a close second, but the

total cost of the model is still quite high. CEGB-BL offers a cost

reduction of around 70% compared to LGBM-BL, exhibits a good
trade-off between efficiency and effectiveness, and is significantly

more effective than LMartC3-BL, while using the fewest number of

features out of the complex ranker baselines.

The new cascade models ICC and FCC significantly improve

effectiveness for all metrics exceptNDCG@1when compared against

the cost competitive baseline CEGB-BL, with FCC having a higher

final cost. This partially supports RQ1, and indicates that locally

and globally optimizing document rankings in the cascade leads to

higher early precision effectiveness. LMartC3-BL is significantly less
effective across all metrics and is even marginally more expensive

in some cases. Among the new models, ICC is the most effective

cascade system overall, and also has a slightly lower cost than CEGB-
BL. FCC has a similar effectiveness profile, but is more expensive.



Table 4: Yahoo! S1 (519 features). Entries marked △, ▲ correspond to statistical significance using a paired t-test with Bonferroni correction

at 95% and 99% confidence intervals respectively. Comparisons are relative to CEGB-BL.

RBP ERR@k NDCG@k

System p = 0.5 @1 @3 @5 @1 @3 @5 # Stages # Feat. Stage # Feat. Total Cost

Ground Truth Models

LGBM-BL 0.472
▲

0.362
▲

0.440
▲

0.461
▲

0.721
▲

0.722
▲

0.742
▲

1 501 501 16,517

CEGB-BL (31) 0.473
▲

0.360
▲

0.438
▲

0.459
▲

0.715
▲

0.716
▲

0.736
▲

1 459 459 14,445

CEGB-BL 0.466 0.356 0.433 0.454 0.703 0.701 0.721 1 187 187 4,793

LMartC3-BL 0.448
▼

0.336
▼

0.413
▼

0.435
▼

0.663
▼

0.664
▼

0.685
▼

3 162/274/356 356 4,951

BM25F-SD 0.432
▼

0.317
▼

0.399
▼

0.422
▼

0.629
▼

0.641
▼

0.667
▼

1 1 1 150

Experimental Cascade Models

ICC 0.469
▲

0.360
▲

0.437
▲

0.458
▲

0.711 0.710
▲

0.728
▲

3 153/246/405 416 4,751

FCC 0.470
▲

0.360
▲

0.436
▲

0.457
▲

0.710 0.709
▲

0.728
▲

3 124/353/412 435 5,476

WCC 0.468
▲

0.357 0.434
△

0.455
△

0.706 0.706
▲

0.723 3 152/218/385 395 3,961

WCC has the worst performance of the newmodels, but it is also the

most efficient. Overall, backpropogation and joint learning appear

to provide greater control over the trade-offs in cost-aware tree-

based models, making it a plausible solution for RQ2.

MSLR-WEB10K Experiments. TheMSLR-WEB10K collection con-

tains 10,000 queries and 136 features that are publicly documented

from a retired version of the Bing search engine. Results are shown

in Table 5. BM25 is used as a lower bound reference (feature 110) [35].
Again, LGBM-BL is the most effective system with the highest cost

as expected. The efficiency gains for CEGB-BL are not as pronounced
when compared to those seen on Yahoo! S1 (possibly a result of fewer
features and pseudo cost labels). For ERR the new cascade systems

ICC and FCC significantly improve effectiveness when compared

to CEGB-BL, while reducing efficiency costs around 32% and 47%

respectively. NDCG also exhibits some positive gains, albeit less

consistently.

The MSLR-WEB10K dataset reveals a very different trade-off

profile than Yahoo! S1 for the systems being compared. The deeper

document depth provides cascaded systems additional opportu-

nities to discover efficiency improvements that do not degrade

effectiveness. This suggests that even more favourable trade-offs

could be uncovered by including additional documents and features

in the cascade.

Detailed Trade-off Comparisons. While the aggregate com-

parisons provide some evidence of the benefits of our proposed

approaches, they do not clearly demonstrate the full potential of

cascade modelling. Figure 2 shows the Pareto frontier of the trade-

off performance for ICC, FCC, WCC, and the cost-sensitive baseline

CEGB-BL using the early precision metric ERR@3. As the model

cost increases, the advantages of using a cascade model on both

collections become much clearer. Similar performance profiles can

be shown for all of the metrics in Table 4 and Table 5, but are

omitted here due to space limitations. For both collections, our

new cascading approaches can produce greater effectiveness gains

at a lower cost, with ICC consistently being the best approach

overall. Any of these models could be further tuned to choose a

more favourable trade-off stopping point based on the requirements

Table 6: Yahoo! S1. Risk sensitivity of systems when compared

against the BM25F-SD baseline.

System

BM25F-SD – Trisk α = 2

RBP@0.5 ERR@3 NDCG@5

LGBM-BL 3.687 1.899 -1.516

CEGB-BL -1.252 -0.687 -3.882
ICC 0.686 1.368 -2.607
FCC 1.885 1.852 -1.094

WCC 0.288 0.480 -3.883

of the system. The ability to more easily control the optimization

of this trade-off is a key strength of the cascade models presented

in this paper.

Risk Sensitivity. However, more control over model optimization

can also have unexpected consequences. One such danger is the risk

of over-optimization, which has become an increasingly common

problem with the widespread adoption of machine learning models

in computer science. One useful sanity check for new LTR models

is to measure the risk sensitivity using a metric such as Trisk [13].
Table 6 shows the corresponding Trisk profile for Yahoo! S1 systems.

Each system is compared against the BM25F-SD baseline, and we

omit LMartC3-BL since it is not as competitive as the other systems.

A Trisk score greater than +2 or less than −2 (shown in boldface) is

regarded as significant for upside reward (no risk) or downside risk

(high risk) respectively. LGBM-BL exhibits the least risk overall, and
has significant upside reward for RBP, however the cost objective is
unbounded. CEGB-BL poses a significant downside risk for NDCG,
as do ICC and WCC. Interestingly, FCC has the best risk profile

among the three new cascading models despite having the worst

overall performance in terms of cost. This might be attributed to

the model using more costly features, which produces a risk profile

closer to the full LGBM-BL model.

In order to gain further insight into the potential risks of cost-

aware modeling, we compare our best performing model ICC



Table 5: MSLR-WEB10K (136 features), results averaged over the 5 folds. Entries marked △, ▲ correspond to statistical significance using a

paired t-test with Bonferroni correction at 95% and 99% confidence intervals respectively. Comparisons are relative to CEGB-BL.

RBP ERR@k NDCG@k

System p = 0.5 @1 @3 @5 @1 @3 @5 # Stages # Feat. Stage # Feat. Total Cost

Ground Truth Models

LGBM-BL 0.377
▲

0.249
▲

0.330
▲

0.354
▲

0.477
△

0.465
▲

0.471
▲

1 132 132 3,382

CEGB-BL (31) 0.375
▲

0.248
▲

0.329
▲

0.353
▲

0.476 0.463
▲

0.468
▲

1 130 130 3,330

CEGB-BL 0.372 0.245 0.325 0.349 0.470 0.459 0.464 1 127 127 3,238

LMartC3-BL 0.226
▼

0.115
▼

0.172
▼

0.193
▼

0.242
▼

0.251
▼

0.262
▼

3 99/113/122 122 2,951

BM25 0.206
▼

0.074
▼

0.129
▼

0.153
▼

0.212
▼

0.238
▼

0.257
▼

1 1 1 100

Experimental Cascade Models

ICC 0.374 0.251
▲

0.331
▲

0.354
▲

0.478 0.463
△

0.465 4 70/105/106/127 128 1,728

FCC 0.374
△

0.250
▲

0.330
▲

0.353
▲

0.477
△

0.462
▲

0.467 4 94/119/117/128 129 2,802

WCC 0.370 0.249 0.327 0.350 0.474 0.458 0.460 4 85/116/113/126 129 1,873

Yahoo! LTR MSLR-WEB10K
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Figure 2: Yahoo! S1 (left), MSLR-WEB10K (right). Quality versus cost trade-off for the three backprop cascades (ICC, FCC, WCC), and CEGB-BL
baseline. The curves depict the per tree evaluation within the ensemble for each system.

against the CEGB-BL baseline on Yahoo! S1 relative to the BM25F-
SD scores, which would represent an initial Stage0 ordering of

candidate documents. Figure 3 is the resulting scatterplot for

NDCG@5 (the metric that has the highest risk in Table 6 for all of the

methods), showing wins and losses greater than 10%. While both

systems are significantly more effective than the baseline overall,

there are quite a few queries where performance is measurably

worse, indicating care should be taken when optimizing cost-aware

models as they are susceptible to over-tuning.

For cost-aware systems the trade-off between user model, cost

and risk is crucial, and understanding how to train models for risk

sensitivity [12, 39], efficiency, and effectiveness simultaneously is

an interesting area of future work worth pursuing.

5 CONCLUSION
This paper explores approaches to address two open research

questions in cost-aware cascaded learning. We develop a general

framework for jointly learning a cascade of ranking models

composed of state-of-the-art tree boosting algorithms using back-

propagation (RQ1). We extend this approach using a state-of-the-

art, cost-aware, learning algorithm CEGB-BL, and show how to

construct tree-based, cascade models (RQ2). We demonstrate that

globally optimized, cascade rankers can achieve much better trade-

offs between efficiency and effectiveness than previous approaches

to cascade ranking, and have additional advantages over the best

known cost-aware, single-stage, tree-based ranking models. Our

results open up new opportunities for further investigation into

the merits of combining complexity reduction techniques and cost

constrained learning in unified cascade ranking frameworks.
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