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SUMMARY

The Burrows-Wheeler Transform (bwt) produces a permutation of a string X, denoted X∗, by sorting
the n cyclic rotations of X into full lexicographical order, and taking the last column of the resulting
n× n matrix to be X∗. The transformation is reversible in O(n) time. In this paper, we consider an
alteration to the process, called k-bwt, where rotations are only sorted to a depth k. We propose new
approaches to the forward and reverse transform, and show the methods are efficient in practice.
More than a decade ago, two algorithms were independently discovered for reversing k-bwt, both
of which run in O(nk) time. Two recent algorithms have lowered the bounds for the reverse
transformation to O(n log k) and O(n) respectively. We examine the practical performance for these
reversal algorithms. We find the original O(nk) approach is most efficient in practice, and investigate
new approaches, aimed at further speeding reversal, which store precomputed context boundaries
in the compressed file. By explicitly encoding the context boundaries, we present an O(n) reversal
technique that is both efficient and effective. Finally, our study elucidates an inherently cache-friendly
– and hitherto unobserved – behaviour in the reverse k-bwt, which could lead to new applications
of the k-bwt transform. In contrast to previous empirical studies, we show the partial transform can
be reversed significantly faster than the full transform, without significantly affecting compression
effectiveness.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Burrows-Wheeler Transform (bwt) – also referred to as the “block-sorting transform” – is
now prevalent in lossless data compression systems [1]. The transformation process produces
a permutation of a string X, denoted X∗, by sorting the n cyclic rotations of X into full
lexicographical order, and taking the last column of the resulting n× n matrix to be X∗.
Remarkably, the transformation is reversible in O(n) time. The transformation does not
compress X, but X∗ tends to have locally skewed first-order statistics which can be exploited
to achieve better compression using relatively simple techniques. Since the transform was
introduced in 1994, many empirical evaluations and theoretical investigations have followed
[2, 3, 4, 5, 6, 7]. The bwt is now the basis for several off-the-shelf compression tools, such as
bzip2 [8, 9]. The bwt is also a key component in fast pattern matching indexes [10, 11], and
has be applied in seemingly unrelated areas such as shape analysis for computer vision, and
machine translation [12]. The full potential of this versatile string permutation is only now
beginning to be realized.
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Most bwt-based compression systems fully sort the cyclic rotations of X, and nearly all
current empirical studies assume a full sorting of rotations. However, a full sorting of the
rotations is resource intensive. In independent work, Schindler [13] and Yokoo [14] described
an alternative approach in which the n rotations are only partially sorted to a fixed prefix
depth, k. We refer to this modified transform as k-bwt. By limiting the sort depth to k, sorting
can be accomplished in O(nk) time using radix sort, and is very fast in practice. Moreover,
Schindler reports nearly identical compression effectiveness to the full transform, even for small
values of k. The algorithms developed by Schindler [13] were subsequently made available in
the general purpose compression tool szip. However, the simplification of the forward k-bwt
transform comes at a cost: the reverse transform becomes more expensive, at least in theory.

Our contribution: First, we describe an efficient forward k-bwt algorithm based on induced
sorting techniques from suffix array construction [15]. Our second contribution is a practical,
O(n) k-bwt time reversal algorithm that implicitly stores context boundaries. Third, we
provide the first thorough empirical analysis of state-of-the-art k-bwt algorithms for the
forward and inverse transforms, compression effectiveness, and associated trade-offs. Lastly, we
discover a previously undocumented locality of access property inherent to k-bwt algorithms,
allowing fast transform reversal for small k.

2. BACKGROUND AND NOTATION

Let X = X[0..n] = X[0]X[1]..X[n] be a string (or text) of n+ 1 symbols, where the first n
symbols of X are drawn from an alphabet Σ and comprise the actual input; X[n] = $ is a
unique “end-of-string” symbol that is defined to be lexicographically smaller than all symbols
in Σ. The string Xi = X[i..n]X[0..i− 1] represents the ith rotation of X or “rotation i” less
formally. The substring X[i..n] is the ith suffix of X, or “suffix i”. Rotation i is always prefixed
with suffix i as a result of the unique end of stream symbol $. The k-bwt depends upon a partial
sort of the rotations of X, based on an ordering of the prefixes of these rotations of length
k ≥ 1. We refer to the partial ordering as a k-ordering of rotations into k-order, and to the
process itself as a k-sort. If two or more rotations are equal under k-order, the rotations have
the same k-rank and therefore fall into the same k-group. Throughout this paper we assume
a k-sort is stable. This assumption guarantees the ordering within each k-group coincide with
their original ordering in X.

2.1. The Burrows-Wheeler Transform

String X is transformed into X∗ using the following technique [1]:

1. Form a matrixM whose rows are the cyclic rotations of X;

2. Sort the rows of M into lexicographical order and let F and L be the first and last
columns ofM respectively;

3. So, X∗ = L[0]L[1]...L[n]. To reverse the transform we also must record position I, which
corresponds to the row inM where the original string appears.

Let Mk refer to the matrix M of rotations with the rotations stably k-sorted. Therefore,
the original matrix of rotations by order of starting positions with respect to X is M0, and
Mn corresponds to the fully sorted matrix of bwt. Let LF k be the mapping of each symbol
in L to its corresponding position in L for Mk. For clarity, we use LFn to denote the true
LF -mapping, that is the LF -mapping from the fully sorted bwt. We use Lk and Ln in a
similar way. Let X∗k be the last column inMk. The output of bwt is X∗, and X∗k represents
the output of k-bwt. If row j ofMk contains rotation i then Pred(j) is the row containing
rotation i− 1. Figure 1 shows the the fully sorted matrixMn (right) and the partially sorted
matrixM2 (left) for the string “knicknack$”. Observe the rows ofMn in the figure – up to
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Figure 1. Sorted cyclic rotations for the string “knickknack$” for the 2nd-order k-bwt (left) and the
full bwt (right).

the $ symbol on each row – are in fact the suffixes of X in lexicographical order. Note the
following important properties ofMn that are necessary for the reverse transform (see [1] for
further details):

1. Given the ith row of Mn, its last character L[i] precedes its first character F [i] in the
original text. So, X = . . . L[i]F [i] . . ..

2. Let c = L[i] and let ri be the frequency of symbol c in L[0..i− 1]. If Mn[j] is the ri th
row of Mn, starting with c, then the symbol corresponding to L[i] in the first column
is located at F [j]. As such, L[i] and F [j] correspond to the same symbol in the input
string T since F and L are both sorted by the text following the symbol occurrences.

The bwt algorithm is reversible using the following procedure, which produces the original
string in reverse order.

1. Count the number of occurrences of each symbol in X∗ and compute an array C[0..|Σ|],
such that C[c] stores the number of occurrences of symbols {$, 1, .., c− 1} in X∗ (and
equivalently X). The count C[c] + 1 gives the first occurrence of the symbol c in F .

2. Next, construct the LF mapping, LFn[0..n], by making a pass over X∗ and setting
LFn[i] = C[L[i]] + Occ(L,L[i], i), where the function Occ(A, b, i) returns the number
of occurrences of symbol b in string A[0..i− 1]. The mapping LFn precisely defines the
Pred function.

3. Reconstruct X backwards as follows: set s = I and for each i ∈ n..0 do X[i]← X∗[s] and
s← LF [s].

2.2. The Bounded Context Transform

The key difference between the full and partial transforms is the ease of implementing the
Pred function. ForMn, Pred(i) is easily derived from LFn[i]. But, LF k does not necessarily
representPred. The mapping LFn[i] returns the position inMn of the rotation j =Mn[i]− 1
in the fully sorted bwt, which is also the the row containing the rotation preceding shift
Mn[i]− 1. Unfortunately, LF k[i] provides no such guarantee for predecessor. It only points
to a row with a rotation that shares the same k-prefix as the true predecessor, or all rows
k-equal to the true predecessor. For example, LF 2[6] = 3 in Figure 1 is not the predecessor of
rotation 3 – the actual predecessor is 4. However, 3 and 4 do share a common prefix of length
k = 2. Using only LF 2 would recover the text “knackknick$” instead of “knickknack$”. The
characters a and i both have the same 2nd-order context ck. During reconstruction of X from
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X∗2 , using LF 2, the character i is processed first instead of the correct choice a as LF 2 only
points to the preceding context and not the correct preceding character. However, we shall see
in the next section that LF k can properly simulate Pred as in LFn, using a small amount
of extra information.

2.3. Reversing k-bwt

In this section, we describe how to reconstruct X from X∗k , using only knowledge of the
boundaries of the k-groups inMk. This method was originally described in [13]. For now, we
assume this information is available before reconstruction w.l.o.g.. The k-group boundaries
can be represented as a bitvector, Dk, or just D for short.

Definition 1
Let Dk[1..n] be a bitvector, such that Dk[1] = 1 and for 2 ≤ i ≤ n, 1 ≤ k ≤ n:

Dk[i] =

{
0, ifMk[i][1..k] =Mk[i− 1][1..k]
1, ifMk[i][1..k] 6=Mk[i− 1][1..k].

So, D[i] = 1 if the rotations at rows i and i− 1 inMk are in different k-groups, and D[i] = 0
if they belong to the same k-group. Thus, a k-group containing v + 1 members is indicated by
a substring 10v in D. For example, the corresponding D2 in Figure 1 is 11101111011. Recall
that the rotations are defined to be in ascending order (due to the stability of the sorting
process) within each k-group. During reversal, the rows in a given k-group must be visited last
to first, by virtue of the fact that we are outputting the string from last character to first.
We now have the pieces for a complete reversal algorithm for k-bwt:

j = I
for i = N downto 0 do
X[i]← X∗k [j]
g ←Group(j)
j ← Pred(j) ≡ g −GroupPos[g]
Increment GroupPos[g]

As previously discussed, LF k cannot be used to implement the Pred function directly as
LF k[j] only guarantees to point to a symbol in the same k-group. So, the correct predecessor
must be derived from the current k-group. Therefore, the preceding k-group g (g = Group(j))
is located. Then, the correct preceding character j within the k-group is determined by
maintaining the count of all of the previously decoded characters within g (GroupPos(g)).
All known methods for reversing k-bwt use a variation of this general procedure. The methods
differ in how the k-group boundaries (the Dk vector) are reconstructed prior recovering X.

3. RELATED WORK

3.1. Block-Sorting Transforms

Construction The bwt is constructed by sorting the rows of the rotation matrixM. This
is easily accomplished by building a suffix array (sa) over X first, and then X∗ is obtained
from the suffix array in linear time by exploiting a duality between a suffix array and the
bwt: X∗[i] = X[sa[i]− 1]. Suffix array construction requires O(n) time, but algorithms using
induced sorting in O(n2 log n) worst case time tend to perform better in practice [15, 16, 17].
The bwt can therefore be computed in linear time. However, suffix array and bwt construction
is still space intensive and has been the subject of several research endeavors. Suffix array
construction does require O(n log n) bits of space compared to O(n log σ) space required for
the bwt. Burrows and Wheeler initially proposed to split the text into smaller blocks to limit
the space usage during construction, but this often lowers compression effectiveness [1, 12].
Okanohara et al. propose a bwt construction algorithm inspired by induced sorting used during

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



REVERSING BOUNDED CONTEXT BLOCK-SORTING TRANSFORMATIONS 5

suffix array construction which can construct X∗ in O(n) time and O(n log σ log logσ n) space
[18]. Kärkkäinen [19] describes a bwt construction algorithm requiring O(n log n) time and
O(n log σ) bits of space. Reducing these bounds is an active area of algorithmic research.

Reversal Reversing the bwt can also be done in O(n) time as described in Section 2.1.
The reverse transform of Burrows and Wheeler requires O(n log n) space. Kärkkäinen and
Puglisi [20] categorize reversal algorithms into three categories: large-space, medium-space, and
small-space. Large-space algorithms require O(n log n) space, small-space algorithms require
only o(n log σ) additional space and medium-space algorithms encompass all algorithms in
between. Seward proposed the most efficient large-space bwt reversal algorithm [9]. Seward’s
reversal algorithm reorders the LF mapping to obtain better cache performance. Small-space
algorithms require minimal extra space, but are often significantly less efficient [20]. Various
medium-space algorithms also provide appealing time and space trade-offs between these two
extremes [20, 21]. After reconstructing the context boundaries, a similar algorithmic approach
could be used to perform space efficient k-bwt inversion as well, but this avenue remains
relatively unexplored.

Applications Burrows and Wheeler proposed the bwt as part of a complete compression
system. Figure 2 shows a typical sequence of modelling and coding in a bwt-based compression
system. The bwt is commonly used as the first step in such compression systems to group
symbols with a similar context together. The following algorithms – move-to-front (mtf)
and run length encoding (rle) – use the transformed text to create a more skewed symbol
distribution which in turn can be compressed more effectively using an entropy encoder.
Compression systems using the bwt are widely used in practice (bzip2) and have been analyzed
in great detail [2, 3, 5]. For a more comprehensive discussion of data compression systems, see
[22, 23, 24].

bwt mtf rle
entropy
coding

Figure 2. A typical encoding sequence for a transform-based compression system.

Ferragina et al. describe an alternative approach to mtf/rle-based bwt compression
systems, called compression boosting [10]. Compression boosting improves effectiveness by
partitioning X∗ into context aligned blocks. These sub-blocks are then individually compressed
by a zero-order compressor to achieve better compression than is possible by applying a zero-
order entropy coder to X∗. A greedy algorithm finds the optimal partitioning by performing
bottom-up merges of the suffix tree of the input text: Suffixes are merged into a block if
compression effectiveness improves, compared to compressing each suffix individually. The
merge criteria is based on the compressibility of the blocks in X∗. The partitioning process
adds significant extra time and space costs during the compression phase and the partition
boundaries must be stored explicitly [7].

Another significant application of bwt is searching in compressed text. In seminal work,
Ferragina et al. proposed the FM-Index, a self-indexing data structure that allows full-text
search directly in the compressed text [10]. The FM-Index provided efficient search over a
compact representation of a text by exploiting the duality between suffix arrays and the bwt,
and has led to a highly productive research area in recent years [25].

Variations Several transform-based permutations similar in spirit to bwt have been
proposed in recent years. Vo and Manku propose RadixZip, a block sorting transform that
breaks the input text into either fixed or variable length tokens, to compress database columns
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[26]. Inagaki et al. [27] propose a theoretical framework called the Generalized Radix Permute
transform (grp), of which bwt, k-bwt and RadixZip are special cases. More recently, Yokoo
further showed the O(n) k-bwt reversal algorithm proposed by Nong et al. [28] for k-bwt can
be adopted to reverse the grp [29].

3.2. Bounded Context Block-Sorting Transforms

The first algorithm to successfully reverse k-bwt was presented by Schindler [13] (and
independently by Yokoo [14]). The initial algorithm iteratively computed the k-group
boundaries during reversal to construct Dk. The 1-group boundaries are recovered by sorting
the symbols of L (in O(n) time, using counting sort) and marking each character transition in
the sorted text as a context boundary. Each new context boundary is computed by traversing
the text and using the character position within the current context to mark the context
boundary of the next order. Overall, k passes over the text are required to reconstruct Dk,
requiring O(nk) time in total.

Recently, Nong and Zhang [30] described an asymptotically more efficient method for
computing Dk which requires O(n log k) time. The key observation made by Nong and Zhang
is that a k-order context is composed of two (k/2)-order contexts. Due to the cyclic properties
inherent to the permutation matrix, the (k/2)-order context positions can be extracted from
the previous iteration. Using a dynamic programming approach, the algorithm uses Di/2 to
produce Di, where i ≤ k, to recover Dk in O(n log k) time. Nong et al. [28] further improve
their algorithm to O(n) time and space for recovering the k-order contexts by computing the
lengths of longest-common-prefixes (lcp) for each adjacent row inMk. The k-order contexts
can then be retrieved by simply traversing the list of lcp values and marking a k-order context
boundary each time lcp ≥ k.

Adjeroh et al. provide an empirical analysis of the commonly available k-bwt compression
system (szip [13]) and a bwt based compression system, bzip2 [12, Chapter 6.1]. In the
comparison, szip achieved comparable compression was a more efficient encoder when k < 40.
Decompression using szip was less efficient than bzip2. However, the experiments used small files
(<4MB) and the two implementations use vastly differing I/O and entropy coding techniques,
making it difficult to draw any conclusions about the relative performance of the systems.

4. EXPERIMENTAL SETUP

In subsequent sections, we empirically compare the effectiveness and efficiency for all k-bwt
algorithms with a bwt baseline. Henceforth, effectiveness is a measure of compressibility of the
transformed text, typically expressed in bits per symbol (bps) or compression ratio (%), and
efficiency is a performance metric expressed in cpu time (sec). First, we consider the efficiency
of the forward k-bwt as compared to the fully sorted bwt. Then, in Section 6, we compare the
efficiency of the inverse transforms and propose new algorithmic approaches based on various
time and space trade-offs. Finally, in Section 7 we evaluate the compression effectiveness for
all of the algorithms and quantify the effectiveness and efficiency trade-offs between bwt and
k-bwt methods.

All algorithms are implemented in ANSI C. The experimental machine was a Core2Duo 3.16
Ghz cpu, 6MB L2 cache and 4GB ram running Linux-2.6.34. An efficient and freely available
reference implementation for the bwt algorithm was used as a baseline∗. In all experiments,
the full text was processed as a single block equal to the size of the file. Standard data sets from
the Pizza & Chili Corpus and the trec collection were used [31]. Table I shows file sizes (in MB),
alphabet sizes (|Σ|) and the zero-order self-information (H0) for each test collection. The Wsj
file is the last 50MB of the Wall Street Journal extracted from the Disk 2 of the trec data

∗http://libdivsufsort.googlecode.com/ v2.01
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|Σ| Size lcpmean lcpmax H0 Description
Wsj 89 50 16 1,344 4.62 The last 50MB of the Wall Street

Journal segment (wsj267) of the trec
data collection.

Dna 4 50 31 14,836 1.98 Sequence of gene DNA sequences
coded as A, G, C, T (all extra symbols
were stripped from the text).

Xml 96 50 42 1,005 5.23 Bibliographic information from dblp.
Sources 227 50 168 71,651 5.53 Concatenation of source code of the

linux-2.6.11.6 and gcc-4.0.0 distribu-
tions.

Table I. Statistical properties of benchmark collection.

collection (see http://trec.nist.gov). In Table I, lcpmean is the mean of the lcp values
between two adjacent rows of the transformed text. This metric is an indicator of the depth
k at which symbols in the test collection will be sorted (on average) in full lexicographical
order. We also show lcpmax, which is an upper bound on the maximum sort depth necessary
to achieve the compression effectiveness of the full bwt. Note that all test inputs are of size
50MB. Additional experiments were performed on variable inputs sizes ranging from 10MB
to 200MB. However, we observed similar results in all of our experiments for differing input
sizes, and therefore show results that are representative of texts of varying length.

5. FORWARD TRANSFORM EFFICIENCY

We now describe how to efficiently construct the forward bounded context transform. Schindler
used a k-deep radix sort to obtain X∗k in O(nk) time. However, initial experiments indicated
this approach was less efficient than current suffix array construction algorithms based on
induced sorting [15, 17]. Using induced sorting, as little as ≈ 30% of the suffixes must be
sorted to obtain the final suffix array and the resulting X∗. To compare the efficiency of the
forward k-bwt to bwt, we adopt the initial induced sorting method of Itoh and Tanaka to
construct X∗k from sak [32]. The algorithm sorts around 50% of the suffixes explicitly and
induces the order of the remaining suffixes by making one additional pass over the text.

The transform can also be performed by augmenting Maniscalco and Puglisi’s induced
sorting suffix array construction algorithm, but would require additional passes over the text
[17]. This algorithm sorts 20% fewer suffixes and allows for faster construction of the full suffix
array as each suffix comparison, on average, requires lcpmean symbol comparisons. However,
for X∗k construction, only the first k symbols of each suffix are compared. So, the cost of more
passes is greater than the decreased number of sorted suffixes, since sorting is to a fixed depth
and terminates more quickly.

$ A B A B A B · · · A B A B

k − 1 k − 1 k − 1 k − 1 k − 1step 1:
k k k k kstep 2:

+1 +1 +1 +1 +1step 3:

Figure 3. Induced sorting X to a depth of k in three steps: First all type B suffixes are sorted to depth
k − 1, second the k-deep sort order of all type A suffixes is induced and finally the sorting depth of

all type B suffixes is increased by one.
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Following the approach described by Itoh and Tanaka, our algorithm partitions all suffixes
in X into two types, A and B, by comparing any two prefixes of two adjacent suffixes X:

X[i] =

{
Type A if X[i] > X[i+ 1]

Type B if X[i] ≤ X[i+ 1].

Each individual type B suffix Si is then assigned a bucket in sak according to the first
character X[i]. All type B buckets are then sorted to a depth of k − 1 as shown in Step 1 in
Figure 3. Next, the sorted B buckets are used to induce the k sorting order for all A buckets
by making one pass over sak as shown in Step 2. Note the special case of inducing the sorting
order of an A bucket from a previous A bucket which is already in k sorted ordering, as each
induction step increases the sorting order by 1 as shown in Figure 4.

$ A B A B · · · A B A B

k k + 1 k + 2 k + 3

Figure 4. Inducing the sorting order of an A bucket from a previous A bucket.

To properly induce the k sorting order from an A bucket Ai, we only need to preserve the
ordering if more than one position in the Ai, map to the same following bucket Aj , as the
ordering between buckets is determined in Step 1. Finally, we increase the sorting depth of all
type B buckets to k to obtain sak and X∗k respectively.
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Figure 5. Efficiency of induced sorting for the forward k-bwt for the Wsj, Sources, Dna and Xml
collections proportional to Schindler’s (St) k-deep radixsort method.

Figure 5 shows the efficiency gain for an induced sorting forward k-bwt over the k-deep
radixsort based transform originally proposed by Schindler. We use the radix sort method due
to Kärkkäinen and Rantala [33], which is the fastest general string sorting method in practice.
For all test files, induced sorting is always more efficient. As the sorting depth increases, the
induced sorting transform becomes faster relative to the O(nk) k-deep radixsort transform as
only 50% of the suffixes are being explicitly (ie. radix) sorted.

Figure 6 shows the running time of the k-bwt algorithm proportional to bwt for varying
text inputs. Induced sorting in k-bwt outperforms the full bwt for small k. For all files with
k < 8, the k-bwt transform is faster than bwt. For k < 5 the k-bwt transform is nearly
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Figure 6. Efficiency of induced sorting for the forward k-bwt for the Wsj, Sources, Dna and Xml
collections relative to bwt.

twice as fast. The k-bwt sorts the initial matrixMk up to a depth of k, but bwt must sort
the matrix fully. Even though the construction of the transform is done using fast suffix array
construction algorithms, we still expect the k-bwt transform to be more efficient as the average
number of character comparisons required to compare two individual suffixes (lcpmean) tends
to be significantly larger than k.

The bwt and the k-bwt transform are usually part of a larger compression system. In
many cases, the transform is the main contributing factor to the overall running time of
the compression system. The efficiency of the complete compression system should therefore
improve proportionally to the observed transform improvements. Here, we expand the
investigation of efficiency of bwt and k-bwt to different transform-based compression systems
that use the bwt-based transforms as a first step in a sequence of algorithms. The Wsj file is
first transformed using bwt or k-bwt, then compressed with different combinations of (mtf),
Run-Length Encoding (rle) and an entropy coder. We tested the following standard entropy
coders:

• Huffman coder (huff) [34]
• Range Coder (range) [35]
• Arithmetic coder (arith) [36, 37]

We also replaced the mtf and rle steps with compression boosting (boost) as described in
[7] for k-bwt-based compression systems. The freely available boosting library framework† was
used as the basis for these experiments. Figure 7 shows the efficiency for different compression
systems using k-bwt proportional to bwt. We observe that for most systems, performance
gains due to k-bwt translate into overall performance gains (that is, the bwt phase is indeed
a computational bottleneck). The k-bwt compression systems can be up to 4 times faster
than the full bwt. For traditional mtf-rle compression systems with k < 6, k-bwt is twice
as fast. Compression boosting with the k-bwt only shows marginal efficiency improvements
because the post transform phase (in which the optimal partitioning is computed) is itself so
computationally expensive.

†http://people.unipmn.it/manzini/boosting/
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Figure 7. Compression efficiency of different compression systems using the k-bwt for Wsj proportional
to the bwt.

6. INVERSE TRANSFORM EFFICIENCY

The recovery of the original string from all of the transforms is similar. The fundamental
difference between bwt and k-bwt inversion is the need to recover context boundaries. As
discussed in Section 3.2, several methods exist to recover the original context information.
However, we will see shortly that the overhead for context reconstruction increases dramatically
as k gets large.

Intuitively, we expect bwt inversion to be more efficient than any of the k-bwt methods,
and the O(nk) k-bwt algorithm to be less efficient than the O(n) or O(n log k) algorithms.
However, the constant factors for the O(n) and O(n log k) algorithms have a significant impact
on their practical efficiency. This discrepancy is explored further in Section 6.2.
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Figure 8. Reverse-transform efficiency of k-bwt using the O(nk) algorithm for Wsj, Sources, Dna
and Xml in time relative to bwt for each respective file.

Figure 8 shows the efficiency of Schindler’s O(nk) algorithm for all test collections relative to
the efficiency of the full bwt algorithm. For small values of k, the inverse k-bwt outperforms
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Figure 9. Cache misses for variable k in percent proportional to the cache misses of bwt for the
respective file.

bwt, regardless of text input. The inverse k-bwt is up to three times faster than bwt
inversion. The exact performance depends on the composition of the collection, but clearly
k-bwt inversion can be more efficient than bwt inversion.

6.1. Localization in k-bwt

The efficiency of k-bwt is contradictory to previous results and somewhat surprising as the k-
bwt algorithm performs additional work to reconstruct context information during inversion.
Further experimental investigation into the discrepancy revealed a significant caching effect
when k is small. In order to quantify the unexpected efficiency gain, we benchmarked the
locality of access in the k-bwt inversion process. We focused on Level 2 cache performance
which can be measured using the papi library version 4.1.0‡.

Figure 9 shows the percentage of cache misses for variable k-order contexts during the
reconstruction of the original text for each test collection. The cache misses are shown
proportional to bwt inversion for identical files. Both algorithms perform the same task –
reconstructing the text using the LF mapping – but, exhibit a profound difference in cache
behaviour. For low order contexts, k-bwt has 90% fewer cache misses than bwt. As we will
see, this remarkable difference is a natural by-product of k-bwt inversion. During inversion,
the algorithm jumps between different contexts, but each partially sorted context is encoded
by increasing position in the original text. The inherent locality of reference in each context
allows the operating system to cycle between each context with fewer page-outs, resulting in
fewer overall cache misses.

However, this observation does not hold true for Dna, where the cache misses for k < 4 are
higher than for k ≥ 4. This in contrast to the alternative collections where smaller values of k
always results in better cache performance. Upon further investigation, our experiments show
that k-bwt algorithms do not benefit from the cache effect when |Σ| is very small. For small
k and |Σ|, the number of cache misses is unusually high in Dna. Since the total number of
contexts is bound by |Σ|k, the cache can not be fully utilized: Each context has only a page size
ps of data pre-fetched in the cache. Once this data segment is processed, a cache miss occurs,
and a new page is loaded. At most ps · |Σ|k data is cached at any given time, resulting in more
cache misses as data is processed using fewer distinct memory pages. Therefore, balancing the

‡http://icl.cs.utk.edu/papi/
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Figure 10. Context reconstruction time in seconds for variable k for all k-bwt algorithms (right) and
as a percentage of the total reconstruction time for Dna (left).

number of distinct contexts and available memory pages can have a dramatic impact on overall
efficiency. So, when |Σ| is small, using larger values of k is desirable.

6.2. Context Reconstruction

The recovery of the k-order bwt and the full bwt transform are similar. Both transforms can
sort the input text and use an LF mapping to recover the original string in O(n) time. The
k-bwt method has the additional cost of reconstructing the context vector. As discussed in
Section 3.2, three distinct context reconstruction algorithms have been proposed. Figure 10
compares only the cost of context reconstruction for each of these algorithms. The left subfigure
shows the aggregate time for reconstruction and the right subfigure shows the percentage of
total runtime consumed during context reconstruction for Dna.

The O(nk) algorithm is significantly more efficient for even moderate values of k. For
k = 100, the O(n log k) algorithm is still more than twice as fast as the linear variant. The
constant factors of O(n) algorithm are not overcome until k is very large. Clearly the cost of
vector reconstruction is a major contributor to efficiency loss for small k – up to 40% of the
total cost for k-bwt inversion. Also, the context reconstruction time is largely independent of
the text input, unlike the compression effectiveness and inverse transform efficiency.

6.3. Engineering a New Inversion Algorithm

Recovering context information in O(nk) time is a significant contributor to the overall time
complexity of k-bwt inversion. Nevertheless, our empirical results show that k-bwt can still
outperform bwt. Since vector reconstruction is a major bottleneck, up to 40%, methods which
can alleviate this cost merit further consideration. Consequently, storing the contexts explicitly
instead of computing the bounds during the reverse transform is a sensible space-time trade-
off to consider. For small k, the number of distinct contexts is small, and, can thus be stored
efficiently.

The contexts can be represented naively as a bitvector of size n bits, but the vector is
sparse for small values of k, making the context information more compressible. We considered
several methods to explicitly encode the distinct contexts C. A pragmatic choice of compressed
d-gap encoding is used to store the context information in our study, as the method is highly
effective when C � n [38]. Furthermore, the sequential decoding limitation imposed by d-gap
encoding is not problematic since random access to the context vector during reconstruction
is not required. The additional cost to explicitly store the contexts relative to the cost of
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Theoretical Empirical
Algorithm Time Space Space(bytes)

[13] O(nk) O(n) 5n
[30] O(n log k) O(n) 22n
[28] O(n) O(n) 26n

Our Algorithm O(n) O(n) 5n
Table II. Time and space bounds for inverse k-bwt context reconstruction.

reconstructing the context information using the O(nk) reconstruction algorithm is shown in
Figure 11. For Wsj, Xml and Sources, the cost of storing context information is negligible
for k < 6. Context information for the Dna collection can be stored effectively for k < 10.
Overall, there is no significant loss in compression effectiveness for moderate values of k.

6.4. Time and Space Trade-offs

Another important dimension to consider is the space required by the inversion process. Table
II shows the time and space requirements with constant factors, for all context reconstruction
algorithms, including our explicit storage algorithm. The empirical space usage is estimated
using the program memusage available from the Pizza & Chili Corpus.

The O(n log k) and O(n) algorithms require up to five times more space than the O(nk)
algorithm to recover the original text. This space is further reduced by eliminating the context
reconstruction requirement entirely, such as is done by our explicit context boundary encoding
algorithm. Our algorithm requires only 5n space and can be inverted in O(n) time, but is only
preferable when k is small.

7. COMPRESSION EFFECTIVENESS

The bwt algorithm groups symbols with similar context, allowing for more effective text
compression. The transform is the first of a series of steps in a typical data compression
system as described in Section 2.1. The k-bwt algorithm sorts the permutation matrix to
a depth of k, and symbols with similar k-order contexts are grouped together. Consecutive
contexts with an lcp > k will not necessarily be exploited in k-bwt (but they may be by
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Figure 11. Entropy loss resulting from explicitly storing the contexts with d-gap encoding relative to
reconstruction.
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Figure 12. Effectiveness of k-bwt for Wsj, Sources, Dna and Xml. Effectiveness is measured in
entropy loss relative to bwt.

chance). Therefore, the k-bwt-based compression system can be less effective than a system
using bwt.

We first consider the compression effectiveness of the algorithms relative to the sort depth
k. Effectiveness is measured in bps using zero-order empirical-entropy, H0, after applying
Move-To-Front (mtf) to the transformed text [39, 40, 41]. Figure 12 shows the effectiveness of
k-bwt for increasing values of k. The effectiveness is reported as the entropy loss in bits per
symbol relative to bwt. As k increases, the performance of k-bwt approaches the effectiveness
achievable using a fully sorted bwt. For k = 6, the limited context transform achieves nearly
identical compression effectiveness. For Dna, the performance of k-bwt is independent of k.
This is unsurprising since dna compression usually requires additional symbol model steps to
improve compression effectiveness [42, 43, 44, 45]. The Wsj, Sources and Xml collections can
be compressed effectively using contexts as low as order-5. Overall, using a limited order context
transform supports efficient compression, and achieves impressive compression effectiveness,
even when k is small.

We now expand the empirical results for compression effectiveness in full compression
systems. Each file is first transformed using bwt or k-bwt, then compressed with mtf and
rle, or boost. A variety of entropy coders are then applied to compress the transformed input.
Table III shows the compression effectiveness in bits per symbol and efficiency in seconds of
k-bwt for k = 2, 4, 8, 10, boosting and bwt using the different compression systems.

All compression systems show similar compression effectiveness relative to sorting depth.
Huffman encoding is more efficient than Range or Arithmetic coding, but results in
worse effectiveness. Compression boosting using bwt outperforms all systems in terms of
effectiveness, but is an order of magnitude slower than all other combinations. When k > 6,
the effectiveness loss is below 10 percent in k-bwt systems. When k > 8, the compression loss
drops less to than 3 percent. The experiments show that for small k, compression effectiveness
is close to that of bwt, but is much more efficient.

7.1. Inverse Transform Effectiveness and Efficiency Trade-offs

In the previous section, we demonstrated how a context bounded transform can achieve
near identical compression results as bwt for small values of k, and that the initial O(nk)
context reconstruction algorithm is the most efficient choice for lower order contexts. Figure 13
summarizes trade-offs between efficiency and effectiveness of the various inversion algorithms.
Each sub-graph uses a distinct scaling to improve readability. We compare only bwt,
Schindler’s O(nk) k-bwt, and our O(n) algorithm with explicit encoding since the O(n log k)
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H0

mtf-rle
Arith Range Huff

bps sec bps sec bps sec

Wsj

bwt 2.12 1.70 11.14 1.67 9.93 1.78 9.80
k-bwt-2 3.42 3.08 4.09 3.08 2.88 3.31 2.75
k-bwt-4 2.56 2.12 6.15 2.12 4.94 2.34 4.81
k-bwt-8 2.33 1.77 8.67 1.77 7.46 1.89 7.33
k-bwt-10 2.17 1.72 9.93 1.72 8.72 1.87 8.59
Boost - 1.65 108.07 1.66 60.53 1.68 87.06

Sources

bwt 1.71 1.43 11.44 1.42 9.67 1.48 9.83
k-bwt-2 2.45 2.15 4.71 2.16 2.94 2.26 3.10
k-bwt-4 1.86 1.60 6.44 1.60 4.67 1.68 4.83
k-bwt-8 1.72 1.50 8.83 1.49 7.06 1.56 7.22
k-bwt-10 1.71 1.47 9.88 1.48 8.11 1.53 8.27
Boost - 1.65 108.07 1.66 60.53 1.68 87.06

Xml

bwt 1.15 0.77 9.08 0.77 8.35 0.81 8.34
k-bwt-2 2.46 1.65 3.31 1.65 2.58 1.66 2.57
k-bwt-4 1.53 0.95 5.37 0.95 4.64 1.12 4.63
k-bwt-8 1.16 0.82 8.56 0.82 7.83 0.96 7.82
k-bwt-10 1.15 0.82 9.42 0.82 8.69 0.94 8.68
Boost - 0.74 84.06 0.75 48.79 0.75 72.67

Dna

bwt 1.94 1.89 12.37 1.86 10.69 1.98 10.57
k-bwt-2 1.98 1.98 4.71 1.98 3.03 2.11 2.91
k-bwt-4 1.98 1.98 6.03 1.98 4.35 2.10 4.23
k-bwt-8 1.97 1.97 9.71 1.97 8.03 2.10 7.91
k-bwt-10 1.96 1.97 10.98 1.97 9.30 2.10 9.18
Boost - 1.86 99.90 1.86 58.23 1.96 92.14

Table III. Effectiveness and efficiency for common transform-based compression system combinations.
The H0 result is not shown for Boost since this method requires each context block to be compressed

separately, resulting in effectiveness approaching Hk.

and O(n) k-bwt reconstruction algorithms are always less efficient when k < 10 in practice.
As k gets large, the cost of storing an increasingly dense context vector begins to offset any
gains that might be achievable by sorting to a higher k for our O(n) algorithm. The Wsj
test collection can be decoded twice as fast using k-bwt algorithms with little compression
loss. The Xml can be recovered up to 50% faster and approaches bwt effectiveness at k = 4.
The Sources collection can be compressed effectively and efficiently using low order contexts
and the Dna collection decompresses three times as fast at identical levels of effectiveness.
Implicit context storage has negligible impact on compression effectiveness for small k for all
test collections.

7.2. Forward Effectiveness and Efficiency Trade-offs

Context-bound transforms achieve similar compression effectiveness to full transform based
compression systems, but can compress faster. Figure 14 shows the effectiveness and efficiency
trade-offs achieved using our k-bound forward transform for different compression systems.
Each sub-graph uses a distinct scaling to improve readability. We compare the effectiveness
and efficiency achieved for bwt and k-bwt compression systems where 2 ≤ k ≤ 10. We also
include the common compression systems bzip, szip, and gzip for reference. We do not show
boosting as it is an order of magnitude slower than all other compression systems tested. Note
the total I/O costs are included in this comparison to allow a fair comparison to the “off the
shelf” compression systems.
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Figure 13. Efficiency vs effectiveness for block-sort inversions.

For Wsj, the k-bwt compressor is faster than gzip and at the same time achieves better
compression. All compression backends show a similar effectiveness and efficiency trade-off.
The bwt system is shown in the graph as an unconnected point at the top of the curve as k-
bwt systems approach the full bwt as k approaches n. The bwt compression systems achieve
slightly better compression but are less efficient when k < n. The bzip2 compressor is fast but
does not achieve comparable compression effectiveness due to the fixed block size of 900 kB. The
szip compressor is less efficient than our k-bwt system, for all k other than k = 4. For k = 4,
szip uses a custom “super alphabet” method to only sort the text once, resulting in noticeably
faster compression. This special case method can also be exploited in our compression system,
but is an implementation detail we do not explore here. The Sources and Xml collections
show similar behaviour. The k-bwt compressor achieves remarkable compression effectiveness
on the Xml collection even for small k, but this result is more an artifact of a specific, highly
compressible collection than the compression system. The Dna collection is generally not
compressible without more specialized modelling steps, and thus does not show any significant
trade-offs. Note that for gzip using the -9 parameter for best compression, no result is shown in
the Dna graph as the running time is an order of magnitude larger than the other compressors.
We also performed the same experiments for the lzma based compressor. The results are not
shown in Figure 14 as the running time is significantly less efficient, and as much as 11 times
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Figure 14. Efficiency vs effectiveness for bounded context-based transformation systems.

slower for Dna. However, lzma is 3% more effective on average than the best compression
method shown.

8. FUTURE PROSPECTS

In this section we describe several directions for the k-bwt we wish to explore in the future.

Compression boosting is a promising technique to improve compression effectiveness when
used in conjunction with block-sorted transforms [46]. However, the partitioning process
has a significant time cost. The context boundaries of k-bwt could be used in combination
with compression boosting to provide a more efficient partitioning process with similar
effectiveness gains. Also, boosting requires the explicit storage of the partitioning
information. Using the k-order boundaries to partition X∗k would therefore make
recovering the context boundaries during the reverse transform unnecessary.

Weighted Frequency Count (Wfc) was proposed by Deorowicz as a second stage
alternative in bwt-based compression systems [41]. The method uses context information
within X∗ to perform context aware frequency counting to improve effectiveness. The
(Wfc) tries to estimate context switches withinX∗ to adjust the weights for each symbol.
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Different quantization models achieve better performance depending on properties of the
input file. The context information implicitly provided by k-bwt could be used to improve
these estimations, and thereby achieve better compression effectiveness.

Search in compressed text Ferragina et al. use bwt and its inherent relationship with the
suffix array to support efficient search in compressed text [10]. Building a similar system
based on k-bwt is an interesting open problem.

Variable depth transform Partial sorting ofM allows faster compression. Our experiments
show that for small k, compression effectiveness is comparable to bwt. However, the size
of individual contexts at depth k can vary significantly. Instead of bounding the sorting
depth to a fixed length in the forward transform, we could instead bound the maximum
and minimum size of each context, thereby creating a variable depth transform.

9. SUMMARY

In this work, we provide an comprehensive evaluation of bounded context length block sorting.
We propose a new forward transform algorithm using induced sorting that is faster than
previous approaches. We also propose a new reversal algorithm which explicitly stores the
context information to avoid expensive context reconstruction. We further show that existing,
theoretically efficient, context recovery algorithms do not perform well in practice due to
large constant factors and space usage. Finally, we highlight the efficiency and effectiveness
tradeoffs for k-bwt. In future work, we intend to investigate searching in k-deep transformed,
compressed text; to use the context information to improve compression effectiveness in the
later stages of compression systems; and to explore variable depth transformations.
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