
Enhanced byte codes with restricted prefix properties

J. Shane Culpepper1 and Alistair Moffat2

1. NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Victoria 3010, Australia

2. Department of Computer Science and Software Engineering
The University of Melbourne, Victoria 3010, Australia

Abstract. Byte codes have a number of properties that make them attractive for
practical compression systems: they are relatively easy toconstruct; they decode
quickly; and they can be searched using standard byte-aligned string matching
techniques. In this paper we describe a new type of byte code in which the first
byte of each codeword completely specifies the number of bytes that comprise
the suffix of the codeword. Our mechanism gives more flexible coding than pre-
vious constrained byte codes, and hence better compression. The structure of the
code also suggests a heuristic approximation that allows savings to be made in
the prelude that describes the code. We present experimental results that com-
pare our new method with previous approaches to byte coding,in terms of both
compression effectiveness and decoding throughput speeds.

1 Introduction

While most compression systems are designed to emit a streamof bits that represent
the input message, it is also possible to use bytes as the basic output unit. For example,
Scholer et al. [2002] describe the application of standard byte codes – calledvbyte en-
coding in their paper – to inverted file compression; and de Moura et al. [2000] consider
their use in a compression system based around a word-based model of text.

In this paper we describe a new type of byte code in which the first byte of each
codeword completely specifies the number of bytes that comprise the suffix of the code-
word. The new structure provides a compromise between the rigidity of the static byte
codes employed by Scholer et al., and the full power of a radix-256 Huffman code of
the kind considered by de Moura et al. The structure of the code also suggests a heuris-
tic approximation that allows savings to be made in the prelude that describes the code.
Rather than specify the codeword length of every symbol thatappears in the message,
we partition the alphabet into two sets – the symbols that it is worth taking care with,
and a second set of symbols that are treated in a more generic manner.

Our presentation includes experimental results that compare the new methods with
previous approaches to byte coding, in terms of both compression effectiveness and
decoding throughput speeds.

2 Byte-aligned codes

In the basic byte coding method, denoted in this paper asbc, a stream of integersx ≥ 0
is converted into a uniquely decodeable stream of bytes as follows: for each integer

x, if x < 128, thenx is coded as itself in a single byte; otherwise,(x div 128) − 1
is recursively coded, and thenx mod 128 is appended as a single byte. Each output
byte contains seven data bits. To force the code to be prefix-free, the last output byte
of every codeword is tagged with a leading zero bit, and the non-final bytes are tagged
with a leading one bit. The following examples show the simple byte code in action –
bytes with a decimal value greater than127 arecontinuersand are always followed by
another byte; bytes with a decimal value less than128 arestoppersand are terminal.

0 → 000

1 → 001

2 → 002

1,000→ 134-104

1,001→ 134-105

1,002→ 134-106

1,000,000→ 188-131-064

1,000,001→ 188-131-065

1,000,002→ 188-131-066

To decode, a radix-128 value is constructed. For example,188-131-066 is decoded
as((188 − 127)× 128 + (131 − 127)) × 128 + 66 = 1,000,002.

The exact origins of the basic method are unclear, but it has been in use in appli-
cations for more than a decade, including both research and commercial text retrieval
systems to represent the document identifiers in inverted indexes. One great advantage
of it is that each codeword finishes with a byte in which the top(most significant) bit is
zero. This identifies it as the last byte before the start of a new codeword, and means that
compressed sequences can be searched using standard pattern matching algorithms. For
example, if the three-element source sequence “2; 1,001; 1,000,000” is required, a byte-
wise scan for the pattern002-134-105-188-131-064 in the compressed representa-
tion will find all locations at which the source pattern occurs, without any possibility of
false matches caused by codeword misalignments. In the terminology of Brisaboa et al.
[2003b], the code is “end tagged”, since the last byte of eachcodeword is distinguished.
de Moura et al. [2000] consider byte codes that are not naturally end-tagged.

The simple byte code is most naturally coupled to applications in which the symbol
probabilities are non-increasing, and in which there are nogaps in the alphabet caused
by symbols that do not occur in the message. In situations where the distribution is not
monotonic, it is appropriate to introduce analphabet mappingthat permutes the sparse
or non-ordered symbol ordering into a ranked equivalent, inwhich all mapped symbols
appear in the message (or message block, if the message is handled as a sequence of
fixed-length blocks), and each symbol is represented by its rank.

Brisaboa et al. [2003b] refer to this mapping process as generating adensecode.
For example, consider the set of symbol frequencies:

20, 0, 1, 8, 11, 1, 0, 5, 1, 0, 0, 1, 2, 1, 2

that might have arisen from the analysis of a message block containing53 symbols over
the alphabet0 . . . 14. The corresponding dense frequency distribution over the alphabet
0 . . . 10 is generated by the alphabet mapping

[0, 4, 3, 7, 12, 14, 2, 5, 8, 11, 13]→ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ,

that both extracts then = 11 subset of alphabet symbols that occur in the message, and
also indicates their rank in the sorted frequency list. Using dense codes, Brisaboa et al.
were able to obtain improved compression when the underlying frequency distribution
was not monotonically decreasing, with compressed searching still possible by map-
ping the pattern’s symbols in the same manner. Our experimentation below includes a

permuted alphabet dense byte coder, denoteddbc. The only difference between it and
bc is that each message block must have apreludeattached to it, describing the alpha-
bet mapping in use in that block. Section 4 considers in more detail the implications of
including a prelude in each block of the compressed message.

In followup work, Brisaboa et al. [2003a] (see also Rautio etal. [2002]) observe that
there is nothing sacred about the splitting point of128 used to separate the stoppers and
the continuers in the simple byte coder, and suggest that using valuesS andC, with
S + C = 256, gives a more flexible code, at the very small cost of a single additional
parameter in the prelude. One way of looking at this revised scheme is that the tag bit
that identifies each byte is being arithmetically coded, so that a little more of each byte
is available for actual “data” bits.

The codewords generated by a(S, C)-dense coder retain the end-tagged property,
and are still directly searchable using standard character-based pattern matching algo-
rithms. The same per-block prelude requirements as for thedbc implementation apply
to scdbc, our implementation of(S, C)-dense coding.

Brisaboa et al. describe several mechanisms for determining an appropriate value of
S (and henceC) for a given frequency distribution, of which the simplest is brute-force
– simply evaluating the cost of each alternativeS, and choosing theS that yields the
least overall cost. Pre-calculating an array of cumulativefrequencies for the mapped al-
phabet allows the cost of any proposed set of codeword lengths to be evaluated quickly,
without further looping. Brute-force techniques based on acumulative array of frequen-
cies also play a role in the new mechanism described in Section 3.

Finally in this section, we note that Brisaboa et al. [2005] have recently described
an adaptive variant of the(S, C)-dense mechanism, in which the prelude is avoided and
explicit “rearrange alphabet mapping now” codes are sent asneeded.

3 Restricted prefix byte codes

The (S, C)-dense code is a byte-level version of the Golomb code [Golomb, 1966],
in that it matches best with the type of self-similar frequency sets that arise with a
geometric probability distribution. For example, once a particular value ofS has been
chosen, the fraction of the available code-space used for one byte codewords isS/(S +
C); of the code-space allocated to multi-byte codewords, the fraction used for two byte
codes isS/(S + C); and so on, always in the same ratio.

On the other hand, a byte-level Huffman code of the kind examined by de Moura
et al. [2000] exactly matches the probability distribution, and is minimum-redundancy
over all byte codes. At face value, the Huffman code is much more versatile, and can
assign any codeword length to any symbol. In reality, however, a byte-level Huffman
code on any plausible probability distribution and input message block uses just four
different codeword lengths: one byte, two bytes, three bytes, and four bytes. On ann-
symbol decreasing probability distribution, this observation implies that the set of dense
symbol identifiers0 . . . (n−1) can be broken into four contiguous subsets – the symbols
that are assigned one-byte codes, those given two-byte codes, those given three-byte
codes, and those given four-byte codes. If the sizes of the sets are given byh1, h2, h3,
andh4 respectively, then for all practical purposes a tuple(h1, h2, h3, h4) completely
defines a dense-alphabet byte-level Huffman code, withn = h1 + h2 + h3 + h4.

11 prefix followed by10 prefix followed by

5 6 7 8 9 10 21

00

0

10 11 00 00 00 01 00 10 01 00 11 1100 11

0100

01

1 2 3 4

v1=2

20 11 8 5 2 2 1 1 1 1 1

v2=1 v3=1

Fig. 1. Example of a restricted prefix code withR = 4 andn = 11, and(v1, v2, v3) = (2, 1, 1).
The codewords for symbols11 to 21 inclusive are unused. The53 symbols are coded into160
bits, compared to144 bits if a bitwise Huffman code is calculated, and148 bits per symbol if a
radix-4 Huffman code is calculated. Prelude costs are additional.

In the (S, C)-dense code, the equivalent tuple is infinite,(S, CS, C2S, . . .), and it
is impossible, for example, for there to be more of the total codespace allocated to two-
byte codewords than to one-byte codewords. On a input message that consists primarily
of low probability symbols, compression effectiveness must suffer.

Our proposal here adds more flexibility. Like the radix-256 Huffman code, we cat-
egorize an arrangement using a4-tuple of numbers(v1, v2, v3, v4), and require that the
Kraft inequality be satisfied. But the numbers in the tuple now refer to initial digit ranges
in the radix-R code, and are set so thatv1 + v2 + v3 + v4 ≤ R. The code itself hasv1

one-byte codewords;Rv2 two-byte codewords;R2v3 three-byte codewords; andR3v4

four-byte ones. To be feasible, we thus also requirev1+v2R+v3R
2+v4R

3 ≥ n, where
R is the radix, typically256. We will denote asrestricted prefixa code that meets these
criteria. The codeword lengths are not as freely variable asin an unrestricted radix-256
Huffman code, but the loss in compression effectiveness compared to a Huffman code
is slight.

Figure 1 shows an example code that has the restricted prefix property, calculated
with a radixR = 4 for a dense alphabet coveringn = 11 symbols. In this code, the
first two-bit unit in each codeword uniquely identifies the number of two-bit units in
the suffix. Two symbols have codes that are one unit long (v1 = 2); four symbols have
codes that are two units long, prefixed by10; and five symbols have codes that are two
units long, prefixed by11. There are eleven unused codewords.

The great benefit of the additional constraint is that the first unit (byte) in each
codeword unambiguously identifies the length of that codeword, in the same way that
in theK-flat code of Liddell and Moffat [2004] each codeword commences with ak-bit
binary prefix that determines the length of the suffix part forthat codeword, for some
fixed valuek. In particular, for the code described by(v1, v2, v3, v4), the first byte of
any one-byte codeword will be in the range0 . . . (v1 − 1); the first byte of any two-byte
codeword in the rangev1 . . . (v1 +v2−1); and the first byte of any three-byte codeword
will lie between(v1 + v2) . . . (v1 + v2 + v3 − 1). With this structure, it is possible to
create anR-element arraysuffix that is indexed by the first byte of each codeword and
exactly indicates the total length of that codeword.

Algorithm 1 shows how thesuffix array, and a second array calledfirst , are initial-
ized, and then used during the decoding process. Once the codeword length is known,

Algorithm 1 : Decoding a message block.
input: a block-lengthm, a radixR (typically 256), and control parametersv1, v2, v3, andv4,
with v1 + v2 + v3 + v4 ≤ R.
1: create tables(v1, v2, v3, v4, R)
2: for i← 0 to m− 1 do
3: assignb← get byte() andoffset ← 0
4: for i← 1 to suffix [b] do
5: assignoffset ← offset ×R + get byte()
6: assignoutput block [i]← first [b] + offset

output: them symbols coded into the message block are available in the arrayoutput block

function create tables(v1, v2, v3, v4, R)

1: assignstart ← 0
2: for i← 0 to v1 − 1 do
3: assignsuffix [i]← 0 andfirst [i]← start andstart ← start + 1
4: for i← v1 to v1 + v2 − 1 do
5: assignsuffix [i]← 1 andfirst [i]← start andstart ← start + R
6: for i← v1 + v2 to v1 + v2 + v3 − 1 do
7: assignsuffix [i]← 2 andfirst [i]← start andstart ← start + R2

8: for i← v1 + v2 + v3 to v1 + v2 + v3 − v4 − 1 do
9: assignsuffix [i]← 3 andfirst [i]← start andstart ← start + R3

Algorithm 2 : Seeking forward a specified number of codewords.
input: the tables created by the functioncreate tables(), and a seek offsets.
1: for i← 0 to s− 1 do
2: assignb← get byte()
3: adjust the input file pointer forwards bysuffix [b] bytes

output: a total ofs− 1 codewords have been skipped over.

the mapped symbol identifier is easily computed by concatenating suffix bytes together,
and adding a pre-computed value from thefirst array.

The new code is not end tagged in the way the(S, C)-dense method is, a change
that opens up the possibility of false matches caused by bytemisalignments during
pattern matching. Algorithm 2 shows the process that is usedto seek forward a fixed
number of symbols in the compressed byte stream and avoid that possibility. Because
the suffix length of each codeword is specified by the first byte, it is only necessary to
touch one byte per codeword to step forward a given numbers of symbols. By building
this mechanism into a pattern matching system, fast compressed searching is possible,
since standard pattern matching techniques make use of “shift” mechanisms, whereby
a pattern is stepped along the string by a specified number of symbols.

We have explored several methods for determining a minimum-cost reduced prefix
code. Dynamic programming mechanisms, like those described by Liddell and Moffat
[2004] for theK-flat binary case, can be used, and have asymptotically low execution
costs. On the other hand, the space requirement is non-trivial, and in this preliminary
study we have instead made use of a generate-and-test approach, described in Algo-
rithm 3, that evaluates each viable combination of(v1, v2, v3, v4), and chooses the one
with the least cost. Even whenn > 105, Algorithm 3 executes in just a few hundredths

Algorithm 3 : Calculating the code split points using a brute force approach.

input: a set ofn frequencies,f [0 . . . (n− 1)], and a radixR, with n ≤ R4.
1: assignC[0]← 0
2: for i← 0 to n− 1 do
3: assignC[i + 1]← C[i] + f [i]
4: assignmincost ← partial sum(0, n)× 4
5: for i1 ← 0 to R do
6: for i2 ← 0 to R− i1 do
7: for i3 ← 0 to R− i1 − i2 do
8: assigni4 ← d(n− i1 − i2R− i3R

2)/R3e
9: if i1 + i2 + i3 + i4 ≤ R and cost(i1, i2, i3, i4) < mincost then

10: assign(v1, v2, v3, v4)← (i1, i2, i3, i4) andmincost ← cost(i1, i2, i3, i4)
11: if i1 + i2R + i3R

2 ≥ n then
12: break
13: if i1 + i2R ≥ n then
14: break
15: if i1 ≥ n then
16: break
output: the four partition sizesv1, v2, v3, andv4.

function partial sum(lo, hi):
1: if lo > n then
2: assignlo ← n
3: if hi > n then
4: assignhi ← n
5: return C[hi]− C[lo]

function cost(i1, i2, i3, i4)

1: return partial sum(0, i1)× 1 +
partial sum(i1, i1 + i2R)× 2 +
partial sum(i1 + i2R, i1 + i2R + i3R

2)× 3 +
partial sum(i1 + i2R + i3R

2, i1 + i2R + i3R
2 + i4R

3)× 4

or tenths of a second, and requires no additional space. In particular, once the cumula-
tive frequency arrayC has been constructed, on average just a few hundred thousand
combinations of(i1, i2, i3, i4) are evaluated at step 9, and there is little practical gain in
efficiency possible through the use of a more principled approach.

4 Handling the prelude

One of the great attractions of the simplebc byte coding regime is that it is completely
static, with no parameters. To encode a message, nothing more is required than to trans-
mit the first message symbol, then the second, and so on through to the last. In this
sense it is completelyon-line, and no input buffering is necessary. On the other hand,
all of the dense codes areoff-linemechanisms – they require that the input message be
buffered intomessage blocksbefore any processing can be started. They also require
that apreludebe transmitted to the decoder prior to any of the codewords inthat block.

As well as a small number of scalar values (the size of the block; and the code
parametersv1, v2, v3, andv4 in our case) the prelude needs to describe an ordering of
the codewords. For concreteness, suppose that a message block containsm symbols in
total; that there aren distinct symbols in the block; and that the largest symbol identifier
in the block isnmax.

The obvious way of coding the prelude is to transmit a permutation of the alpha-
bet [Brisaboa et al., 2003a,b]. Each of then symbol identifiers requires approximately
log nmax bits, so to transmit the decreasing-frequency permutationrequires a total of
n log nmax bits, or an overhead of(n log nmax)/m bits per message symbol. Whenn
andnmax are small, andm is large, the extra cost is negligible. For character-levelcod-
ing applications, for example withn ≈ 100 andnmax ≈ 256, the overhead is less than
0.001 bits per symbol on a block ofm = 220 symbols. But in more general applica-
tions, the cost can be non-trivial. Whenn ≈ 105 andnmax ≈ 106, the overhead cost on
the same-sized message block is1.9 bits per symbol.

In fact, an exact permutation of the alphabet is not required– all that is needed is
to know, for each alphabet symbol, whether or not it appears in this message block,
and how many bytes there are in its codeword. This realization leads to a better way
of describing the prelude: first of all, indicate whichn-element subset of the symbols
0 . . . nmax appears in the message block; and then, for each symbol that appears, indicate
its codeword length. For example, one obvious tactic is to use a bit-vector ofnmax bits,
with a zero in thekth position indicating “k does not appear in this message block”, and
a one in thekth position indicating that it does. That bit-vector is thenfollowed by a set
of n two-bit values indicating codeword lengths between1 and4 bytes. Using the values
n ≈ 105 andnmax ≈ 106 bits, the space required would thus benmax+2n ≈ 1.2×106,
or 1.14 bits per symbol overhead on a message block ofm = 220 symbols.

Another way in which an ordered subset of the natural numberscan be efficiently
represented is as a sequence ofgaps, taking differences between consecutive items in
the set. Coding a bit-vector is tantamount to using a unary code for the gaps, and more
principled codes can give better compression when the alphabet density differs signifi-
cantly from one half, either globally, or in locally homogeneous sections.

In a byte coder, where the emphasis is on easily decodeable data streams, it is natural
to use a simple byte code for the gaps. The sets of gaps for the symbols with one-byte
codes can be encoded; then the set of gaps of all symbols with two-byte codes; and so
on. To estimate the cost of this prelude arrangement, we suppose that all but a small
minority of the gaps between consecutive symbols are less than127, the largest value
that is coded in a single byte. This is a plausible assumptionunless, for example, the
sub-alphabet density drops below around5%. Using this arrangement, the prelude costs
approximately8n bits, and whenn ≈ 105 corresponds to0.76 bit per symbol overhead
on a message block ofm = 220 symbols.

The challenge is to further reduce this cost. One obvious possibility is to use a code
based on half-byte nibbles rather than bytes, so as to halve the minimum cost of coding
each gap. But there is also another way of improving compression effectiveness, and
that is to be precise only about high-frequency symbols, andto let low-frequency ones
be assigned default codewords without their needing to be specified in the prelude. The
motivation for this approach is that spending prelude spaceon rare symbols may, in the
long run, be more expensive than simply letting them be represented with their “natural”
sparse codes.

Algorithm 4 : Determining the code structure with a semi-dense prelude.
input: an integernmax, and an unsorted array of symbol frequency counts, withc[s] recording the
frequency ofs in the message block,0 ≤ s ≤ nmax; together with a thresholdt.
1: assignn← 0
2: for s← 0 to nmax do
3: assignf [t + s].sym ← s andf [t + s].freq ← c[s]
4: identify thet largestfreq components inf [t . . . (t + nmax)], and copy them and their

corresponding symbol numbers intof [0 . . . (t− 1)]
5: for s← 0 to t− 1 do
6: assignf [f [s].sym].freq ← 0
7: assignshift ← 0
8: while f [t + shift] = 0 do
9: assignshift ← shift + 1

10: for s← t + shift to nmax do
11: assignf [s − shift]← f [s]
12: use Algorithm 3 to computev1, v2, v3, andv4 using thet + nmax+ 1− shift elements now

in f [i].freq
13: sort arrayf [0 . . . (t− 1)] into increasing order of thesym component, keeping track of the

corresponding codeword lengths as elements are exchanged
14: transmitv1, v2, v3, andv4 and the firstt valuesf [0 . . . (t− 1)].sym as a prelude, together

with the matching codeword lengths for thoset symbols
15: sort arrayf [0 . . . (t− 1)] into increasing order of codeword length, with ties broken using

thesym component
16: for each symbols in the message blockdo
17: if ∃x < t : f [x].sym = s then
18: codes as the integerx, usingv1, v2, v3, andv4

19: else
20: codes as the integert + s− shift , usingv1, v2, v3, andv4

Algorithm 4 gives details of thissemi-densemethod, and Figure 2 gives an exam-
ple. A thresholdt is used to determine the number of high-frequency symbols for which
prelude information is supplied in a dense part to the code; and all symbols (including
those in the dense code) are allocated sparse codewords. A minimum-redundancy re-
stricted prefix code for the augmented symbol set is calculated as before; because the
highest frequency symbols are in the dense set, and allocated the shortest codewords,
compression effectiveness can be traded against prelude size by adjusting the control
knob represented byt. For example,t might be set to a fixed value such as1,000,
or might be varied so as to ensure that the symbols that would originally be assigned
one-byte and two-byte codewords are all in the dense set.

Chen et al. [2003] describe a related mechanism in which symbols over a sparse al-
phabet are coded as binary offsets within a bucket, and a Huffman code is used to spec-
ify bucket identifiers, based on the aggregate frequency of the symbols in the bucket. In
their method, each bucket code is sparse and self-describing, and the primary code is a
dense one over buckets. In contrast, we partially permute the alphabet to create a dense
region of “interesting” symbols, and leave the uninteresting ones in a sparse zone of the
alphabet.

11 prefix followed by

13 14

11 1111 10

00 01

00 00 00 01 00 10 01 0000 11

10

..... 11 0111 00

0 1 2 3 4 5 6 7 8 9 10 1211

1 1 1 20 020 110 0 5 1 21 8

1 220 11 8 5 21001 0 1(0) (0) (0)

20 11 8 5

t=4

1(0) 0

1 (0) (0) 1 0 1 22101(0)

v1=3 v3=1

0

Fig. 2. Example of a semi-dense restricted prefix code withR = 4, nmax = 14, and a threshold
of t = 4. The largest four frequencies are extracted, and the rest ofthe frequency array shifted
right by four positions, with zeros inserted where elementshave been extracted. In the third row,
shift = 2 leading zeros are suppressed. The end array hast + nmax + 1− shift = 13 elements,
and is minimally represented as a(v1, v2, v3) = (3, 0, 1) code, with a cost of162 bits. The
modified prelude contains only four symbols, seven less thanis required when the code is dense.

5 Experiments

Table 1 describes the four test files used to validate the new approach to byte coding.
They are all derived from the same source, a 267 MB file ofSGML-tagged newspaper
text, but processed in different ways to generate streams ofinteger symbol identifiers.
The first two files are of particular interest, and can be regarded as respectively repre-
senting the index of a mid-sized document retrieval system,and the original text of it.
In this example the index is stored as a sequence ofd-gaps (see Witten et al. [1999] for
a description of inverted index structures), and the text using a word-based model.

Table 2 shows the compression effectiveness achieved by theexperimental methods
for the four test files described in Table 1, when processed asa sequence of message
blocks (except at the end of the file) ofm = 220 symbols. Table 2 does not include any
prelude costs, and hence only those for the basic byte coderbc represent actual achiev-
able compression. The filewsj267.repair shows the marked improvement possible
with therpbc approach compared to thescdbc method – on this file there are almost
no one-byte codewords required, and a large number of two-byte codewords.

The first three columns of Table 3 show the additional cost of representing a dense
prelude, again when using blocks ofm = 220 symbols. Storing a complete permutation
of the alphabet is never effective, and not an approach that can be recommended. Use
of a bit-vector is appropriate when the sub-alphabet density is high, but as expected, the
gap-based approach is more economical when the sub-alphabet density is low.

The fourth column of Table 3 shows the cost of the semi-dense prelude approach
described in Section 4. It is expressed in two parts – the costof a partial prelude de-

File name and origin
Total Maximum n/nmax Self-information

symbols value (m = 220) (bits/sym)
wsj267.ind: Inverted indexd-gaps 41,389,467 173,252 10.4% 6.76

wsj267.seq: Word-parsed sequence 58,421,983 222,577 22.5% 10.58

wsj267.seq.bwt.mtf: Word-parsed
sequence BWT’ed and MTF’ed

58,421,996 222,578 20.8% 7.61

wsj267.repair: Phrase numbers from
a recursive byte-pair parser

19,254,349 320,016 75.3% 17.63

Table 1. Parameters of the test files. The column headed “n/nmax” shows the average sub-
alphabet density when the message is broken into blocks eachcontainingm = 220 symbols.

File
Method

bc dbc scdbc rpbc

wsj267.ind 9.35 9.28 9.00 8.99
wsj267.seq 16.29 12.13 11.88 11.76
wsj267.seq.bwt.mtf 10.37 10.32 10.17 10.09
wsj267.repair 22.97 19.91 19.90 18.27

Table 2.Average codeword length for different byte coding methods.Each input file is processed
as a sequence of message blocks ofm = 220 symbols, except at the end. Values listed are in terms
of bits per source symbol, excluding any necessary prelude components. Only the column headed
bc represents attainable compression, since it is the only onethat does not require a prelude.

scribing the dense subset of the alphabet, plus a value that indicates the extent to which
compression effectiveness of therpbc method is reduced because the code is no longer
dense. In these experiments, in each message block the threshold t was set to the sum
v1 + v2R generated by a preliminary fully-dense evaluation of Algorithm 3, so that all
symbols that would have been assigned one-byte and two-bytecodes were protected
into the prelude, and symbols with longer codes were left in the sparse section.

Overall compression is the sum of the message cost and the prelude cost. Comparing
Tables 2 and 3, it is apparent that on the fileswsj267.ind andwsj267.seq.bwt.mtf
with naturally decreasing probability distributions, useof a dense code is of no overall
benefit, and thebc coder is the most effective. On the other hand, the combination of
semi-dense prelude andrpbc codes result in compression gains on all four test files.

Figure 3 shows the extent to which the thresholdt affects the compression achieved
by therpbc method on the filewsj267.seq. The steady decline through to aboutt =
200 corresponds to all of the symbols requiring one-byte codes being allocated space
in the prelude; and then the slower decline through to5,000 corresponds to symbols
warranting two-byte codewords being promoted into the dense region.

Table 4 shows measured decoding rates for four byte coders. Thebc coder is the
fastest, and thedbc andscdbc implementations require around twice as long to decode
each of the four test files. However therpbc code recovers some of the lost speed, and
even with a dense prelude, outperforms thescdbc anddbc methods. Part of thebc
coder’s speed advantage arises from not having to decode a prelude in each block. But

File
Prelude representation

permutation bit-vector gaps semi-dense
wsj267.ind 0.31 0.20 0.14 0.08+0.00
wsj267.seq 0.59 0.22 0.27 0.13+0.01
wsj267.seq.bwt.mtf 0.65 0.25 0.29 0.15+0.01
wsj267.repair 4.44 0.78 1.87 0.49+0.02

Table 3. Average prelude cost for four different representations. In all cases the input file is
processed as a sequence of message blocks ofm = 220 symbols, except for the last. Values listed
represent the total cost of all of the block preludes, expressed in terms of bits per source symbol.
In the column headed “semi-dense”, the use of a partial prelude causes an increase in the cost of
the message, the amount of which is shown (for therpbc method) as a secondary component.

1 10 100 1000 10000

Threshold t

11.0

12.0

13.0

14.0

15.0

16.0

17.0

E
ffe

ct
iv

en
es

s
(b

ps
)

wsj267.seq
wsj267.seq, fully dense

Fig. 3. Different semi-dense prelude thresholdst used withwsj267.seq, and therpbc method.

the greater benefit arises from the absence of the mapping table, and the removal of the
per-symbol array access incurred in the symbol translationprocess. In particular, when
the mapping table is large, a cache miss per symbol generatesa considerable speed
penalty. The benefit of avoiding the cache misses is demonstrated in the final column
of Table 4 – therpbc method with a semi-dense prelude operates with a relatively
small decoder mapping, and symbols in the sparse region of the alphabet are translated
without an array access being required. Fast decoding is theresult.

6 Conclusion

We have described a restricted prefix code that obtains better compression effectiveness
than the(S, C)-dense mechanism, but offers many of the same features. In addition,
we have described a semi-dense approach to prelude representation that offers a use-
ful pragmatic compromise, and also improves compression effectiveness. On the file
wsj267.repair, for example, overall compression improves from19.90 + 0.78 =
20.68 bits per symbol to18.27+(0.49+0.02) = 18.78 bits per symbol, a gain of close
to 10%. In combination, the new methods also provide significantly enhanced decoding
throughput rates compared to the(S, C)-dense mechanism.

File
bc dbc scdbc rpbc

(none) dense dense dense semi-dense
wsj267.ind 68 30 30 47 59
wsj267.seq 59 24 24 36 43
wsj267.seq.bwt.mtf 60 26 26 39 50
wsj267.repair 49 9 9 12 30

Table 4.Decoding speed on a2.8 Ghz Intel Xeon with 2 GB of RAM, in millions of symbols per
second, for complete compressed messages including a prelude in each message block, and with
blocks of lengthm = 220. Thebc method has no prelude requirement.

Acknowledgment.The second author was funded by the Australian Research Coun-
cil, and by the ARC Center for Perceptive and Intelligent Machines in Complex Envi-
ronments. National ICT Australia (NICTA) is funded by the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Research Council.

References

N. R. Brisaboa, A. Fariña, G. Navarro, and M. F. Esteller.(S, C)-dense coding: An optimized
compression code for natural language text databases. In M.A. Nascimento, editor,Proc.
Symp. String Processing and Information Retrieval, pages 122–136, Manaus, Brazil, October
2003a. LNCS Volume 2857.

N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Efficiently decodable and search-
able natural language adaptive compression. InProc. 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Salvador, Brazil, August
2005. ACM Press, New York. To appear.

N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá.An efficient compression code for
text databases. InProc. 25th European Conference on Information Retrieval Research, pages
468–481, Pisa, Italy, 2003b. LNCS Volume 2633.

D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Optimal alphabet partitioning for semi-adaptive
coding of sources of unknown sparse distributions. In J. A. Storer and M. Cohn, editors,Proc.
2003 IEEE Data Compression Conference, pages 372–381. IEEE Computer Society Press,
Los Alamitos, California, March 2003.

E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word searching on
compressed text.ACM Transactions on Information Systems, 18(2):113–139, 2000.

S. W. Golomb. Run-length encodings.IEEE Transactions on Information Theory, IT–12(3):
399–401, July 1966.

M. Liddell and A. Moffat. Decoding prefix codes. December 2004. Submitted. Preliminary
version published inProc. IEEE Data Compression Conference, 2003, pages 392–401.

J. Rautio, J. Tanninen, and J. Tarhio. String matching with stopper encoding and code splitting. In
A. Apostolico and M. Takeda, editors,Proc. 13th Ann. Symp. Combinatorial Pattern Matching,
pages 42–51, Fukuoka, Japan, July 2002. Springer. LNCS Volume 2373.

F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of inverted indexes for fast
query evaluation. In M. Beaulieu, R. Baeza-Yates, S. H. Myaeng, and K. Järvelin, editors,
Proc. 25th Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pages 222–229, Tampere, Finland, August 2002. ACM Press, New York.

I. H. Witten, A. Moffat, and T. C. Bell.Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann, San Francisco, second edition, 1999.

