Enhanced byte codes with restricted prefix properties

J. Shane Culpeppeand Alistair Moffat

1. NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,
The University of Melbourne, Victoria 3010, Australia

2. Department of Computer Science and Software Engineering
The University of Melbourne, Victoria 3010, Australia

Abstract. Byte codes have a number of properties that make them aterdot
practical compression systems: they are relatively easgistruct; they decode
quickly; and they can be searched using standard byteealigtring matching
techniques. In this paper we describe a new type of byte aoddich the first
byte of each codeword completely specifies the number ofshijigt comprise
the suffix of the codeword. Our mechanism gives more flexibtéirgy than pre-
vious constrained byte codes, and hence better compre3s$ierstructure of the
code also suggests a heuristic approximation that allowisg®to be made in
the prelude that describes the code. We present experihtestdts that com-
pare our new method with previous approaches to byte codtingrms of both
compression effectiveness and decoding throughput speeds

1 Introduction

While most compression systems are designed to emit a swéaits that represent
the input message, it is also possible to use bytes as thedagpiut unit. For example,
Scholer et al. [2002] describe the application of standstd bodes — calledbyte en-
coding in their paper —to inverted file compression; and defdet al. [2000] consider
their use in a compression system based around a word-basbal of text.

In this paper we describe a new type of byte code in which tis¢ iiyte of each
codeword completely specifies the number of bytes that cafire suffix of the code-
word. The new structure provides a compromise between diiditgi of the static byte
codes employed by Scholer et al., and the full power of a radixHuffman code of
the kind considered by de Moura et al. The structure of the edsb suggests a heuris-
tic approximation that allows savings to be made in the piebhat describes the code.
Rather than specify the codeword length of every symboldpaears in the message,
we partition the alphabet into two sets — the symbols that warth taking care with,
and a second set of symbols that are treated in a more genamican

Our presentation includes experimental results that coenih@ new methods with
previous approaches to byte coding, in terms of both corsmesffectiveness and
decoding throughput speeds.

2 Byte-aligned codes

In the basic byte coding method, denoted in this papeeaa stream of integets > 0
is converted into a uniquely decodeable stream of bytes lksv& for each integer

x, if x < 128, thenz is coded as itself in a single byte; otherwige,div 128) — 1

is recursively coded, and thenmod 128 is appended as a single byte. Each output
byte contains seven data bits. To force the code to be pnefies-the last output byte
of every codeword is tagged with a leading zero bit, and thefiral bytes are tagged
with a leading one bit. The following examples show the siripjte code in action —
bytes with a decimal value greater the2¥ arecontinuersand are always followed by
another byte; bytes with a decimal value less thafarestoppersand are terminal.

0— 000 1,000— 134-104 1,000,000— 188-131-064
1— 001 1,001— 134-105 1,000,001— 188-131-065
2 — 002 1,002— 134-106 1,000,002— 188-131-066

To decode, aradix28 value is constructed. For exampl€s-131-066is decoded
as((188 — 127) x 128 + (131 — 127)) x 128 4 66 = 1,000,002.

The exact origins of the basic method are unclear, but it legs lin use in appli-
cations for more than a decade, including both research amanercial text retrieval
systems to represent the document identifiers in inverigelkies. One great advantage
of it is that each codeword finishes with a byte in which the(topst significant) bit is
zero. This identifies it as the last byte before the start @&mecodeword, and means that
compressed sequences can be searched using standampattehing algorithms. For
example, if the three-element source sequefice,001; 1,000,000” is required, a byte-
wise scan for the patter®n2-134-105-188-131-064 in the compressed representa-
tion will find all locations at which the source pattern o without any possibility of
false matches caused by codeword misalignments. In thértelogy of Brisaboa et al.
[2003b], the code is “end tagged”, since the last byte of eadeword is distinguished.
de Moura et al. [2000] consider byte codes that are not niatad-tagged.

The simple byte code is most naturally coupled to applicatia which the symbol
probabilities are non-increasing, and in which there argays in the alphabet caused
by symbols that do not occur in the message. In situationsenthe distribution is not
monotonic, it is appropriate to introduce alphabet mappinghat permutes the sparse
or non-ordered symbol ordering into a ranked equivalenyfiich all mapped symbols
appear in the message (or message block, if the messagediethas a sequence of
fixed-length blocks), and each symbol is represented bwitk.r

Brisaboa et al. [2003b] refer to this mapping process asrgéing adensecode.
For example, consider the set of symbol frequencies:

20,0,1,8,11,1,0,5,1,0,0,1,2,1,2

that might have arisen from the analysis of a message blatiirtong53 symbols over
the alphabed . . . 14. The corresponding dense frequency distribution over lipfeadet
0...10is generated by the alphabet mapping

0,4,3,7,12,14,2,5,8,11,13] — [0,1,2,3,4,5,6,7,8,9,10],

that both extracts the = 11 subset of alphabet symbols that occur in the message, and
also indicates their rank in the sorted frequency list. gslanse codes, Brisaboa et al.
were able to obtain improved compression when the underfyequency distribution
was not monotonically decreasing, with compressed seayddtill possible by map-
ping the pattern’s symbols in the same manner. Our expetatien below includes a

permuted alphabet dense byte coder, denated The only difference between it and
be is that each message block must haygedudeattached to it, describing the alpha-
bet mapping in use in that block. Section 4 considers in metaildhe implications of
including a prelude in each block of the compressed message.

In followup work, Brisaboa et al. [2003a] (see also Rautialef2002]) observe that
there is nothing sacred about the splitting point 2§ used to separate the stoppers and
the continuers in the simple byte coder, and suggest thagusiluesS and C, with
S + C = 256, gives a more flexible code, at the very small cost of a sindtétmnal
parameter in the prelude. One way of looking at this revisdemie is that the tag bit
that identifies each byte is being arithmetically codedhso & little more of each byte
is available for actual “data” bits.

The codewords generated by(.8, C')-dense coder retain the end-tagged property,
and are still directly searchable using standard charhetsed pattern matching algo-
rithms. The same per-block prelude requirements as foditkémplementation apply
to scdbc, our implementation ofS, C)-dense coding.

Brisaboa et al. describe several mechanisms for detergumirappropriate value of
S (and henc&) for a given frequency distribution, of which the simplesbiute-force
— simply evaluating the cost of each alternatb/eand choosing thé& that yields the
least overall cost. Pre-calculating an array of cumuldtieguencies for the mapped al-
phabet allows the cost of any proposed set of codeword lengthe evaluated quickly,
without further looping. Brute-force techniques based oaraulative array of frequen-
cies also play a role in the new mechanism described in Se8tio

Finally in this section, we note that Brisaboa et al. [200&}édnrecently described
an adaptive variant of thgs, C')-dense mechanism, in which the prelude is avoided and
explicit “rearrange alphabet mapping now” codes are seneaded.

3 Restricted prefix byte codes

The (S, C)-dense code is a byte-level version of the Golomb code [Gb]d866],
in that it matches best with the type of self-similar freqoyesets that arise with a
geometric probability distribution. For example, once dipalar value ofS has been
chosen, the fraction of the available code-space used ®bgte codewords iS/(S +
(); of the code-space allocated to multi-byte codewords,rtetibn used for two byte
codes isS/(S + C); and so on, always in the same ratio.

On the other hand, a byte-level Huffman code of the kind erathby de Moura
et al. [2000] exactly matches the probability distributiand is minimum-redundancy
over all byte codes. At face value, the Huffman code is muchernversatile, and can
assign any codeword length to any symbol. In reality, howexdyte-level Huffman
code on any plausible probability distribution and inputssege block uses just four
different codeword lengths: one byte, two bytes, threeddad four bytes. On am-
symbol decreasing probability distribution, this obséinnaimplies that the set of dense
symbolidentifierd) . . . (n—1) can be broken into four contiguous subsets — the symbols
that are assigned one-byte codes, those given two-bytesctidese given three-byte
codes, and those given four-byte codes. If the sizes of tisease given by, ho, hs,
andhy respectively, then for all practical purposes a tugle, ks, hs, hy) completely
defines a dense-alphabet byte-level Huffman code, withh; + hy + hg + hy.

20 11 8 5 2 2 1 1 1 1 1

vl=2 v2=1 v3=1
00 01 10 prefix followed by 11 prefix followed by

- - - - - B I e e i -

00 01 10 11 0000 0001 0010 0011 0100 @ " 1111

Fig. 1. Example of a restricted prefix code with= 4 andn = 11, and(v1, v2,v3) = (2,1, 1).
The codewords for symbolkl to 21 inclusive are unused. TH& symbols are coded intt60
bits, compared td44 bits if a bitwise Huffman code is calculated, aiMB bits per symbol if a
radix-4 Huffman code is calculated. Prelude costs are additional.

In the (S, C)-dense code, the equivalent tuple is infinitg, C'S, C%S,...), and it
is impossible, for example, for there to be more of the totalespace allocated to two-
byte codewords than to one-byte codewords. On a input mes$isagconsists primarily
of low probability symbols, compression effectiveness tsuéfer.

Our proposal here adds more flexibility. Like the radi6é Huffman code, we cat-
egorize an arrangement using-auple of numbergv, , v2, v3, v4), and require that the
Kraftinequality be satisfied. But the numbersin the tupha nefer to initial digit ranges
in the radixk code, and are set so that+ v, + v3 + v4 < R. The code itself has;
one-byte codewordsiv, two-byte codewordsR?v; three-byte codewords; aéPv,
four-byte ones. To be feasible, we thus also requirevs R+v3 R2+v,R? > n, where
R is the radix, typically256. We will denote asestricted prefixa code that meets these
criteria. The codeword lengths are not as freely variabia as unrestricted radi256
Huffman code, but the loss in compression effectivenesgened to a Huffman code
is slight.

Figure 1 shows an example code that has the restricted preifpepy, calculated
with a radix R = 4 for a dense alphabet covering= 11 symbols. In this code, the
first two-bit unit in each codeword uniquely identifies themher of two-bit units in
the suffix. Two symbols have codes that are one unit leng= 2); four symbols have
codes that are two units long, prefixed 1y, and five symbols have codes that are two
units long, prefixed byt 1. There are eleven unused codewords.

The great benefit of the additional constraint is that the first (byte) in each
codeword unambiguously identifies the length of that coddwio the same way that
in the K -flat code of Liddell and Moffat [2004] each codeword comnmeswith ak-bit
binary prefix that determines the length of the suffix parttfat codeword, for some
fixed valuek. In particular, for the code described by, v2, vs, v4), the first byte of
any one-byte codeword will be in the ran@e. . (v; — 1); the first byte of any two-byte
codeword inthe range . . . (v; +v2 —1); and the first byte of any three-byte codeword
will lie between(vy + v2) ... (v1 + va + v3 — 1). With this structure, it is possible to
create am?-element arrayuffiz that is indexed by the first byte of each codeword and
exactly indicates the total length of that codeword.

Algorithm 1 shows how theuffiz array, and a second array callgckt, are initial-
ized, and then used during the decoding process. Once tlesvood length is known,

Algorithm 1 : Decoding a message block.

input: a block-lengthm, a radixR (typically 256), and control parameteis, vz, vs, andva,
with vy +v2 +v3 +v4 < R.

1: create_tables(v1,v2,vs3,v4, R)

2: fori —0Otom —1do

3: assigrh «— get_byte() andoffset «— 0

4: for i « 1to suffiz[b] do

5: assignoffset < offset X R+ get_byte()

6: assignoutput_block[i] «— first[b] + offset
output: them symbols coded into the message block are available in thg attput_block

function create_tables(v1, vz, vs, v4, R)

assignstart «— 0

:fori—Otov; —1do

assignsuffiz[i] < 0 andfirst[i] < start andstart « start + 1
cfori—wvtovy +v2 —1do

assignsuffiz[i] < 1 andfirst[i] < start andstart <« start + R
s for ¢4 «— vy +votovy +v9 +v3 —1do

assignsuffiz[i] « 2 andfirst[i] « start andstart «— start + R?
s fori«— vy +vo+v3tovy +v2 +v3 —v4 —1do

assignsuffiz[i] < 3 andfirst[i] « start andstart — start + R?

CaNOITORWNE

Algorithm 2 : Seeking forward a specified humber of codewords.
input: the tables created by the functiereate_tables(), and a seek offset
1: fori —0tos—1do
2: assigr < get_byte()
3: adjust the input file pointer forwards byffiz [b] bytes
output: a total ofs — 1 codewords have been skipped over.

the mapped symbol identifier is easily computed by conctitemsuffix bytes together,
and adding a pre-computed value from thet array.

The new code is not end tagged in the way t§eC)-dense method is, a change
that opens up the possibility of false matches caused by fjgalignments during
pattern matching. Algorithm 2 shows the process that is tisegek forward a fixed
number of symbols in the compressed byte stream and avdighdisaibility. Because
the suffix length of each codeword is specified by the first yie only necessary to
touch one byte per codeword to step forward a given numbésymbols. By building
this mechanism into a pattern matching system, fast commpdesearching is possible,
since standard pattern matching techniques make use &' stéchanisms, whereby
a pattern is stepped along the string by a specified numbgnufals.

We have explored several methods for determining a minircast+educed prefix
code. Dynamic programming mechanisms, like those desthbid.iddell and Moffat
[2004] for the K -flat binary case, can be used, and have asymptotically l@eugion
costs. On the other hand, the space requirement is noaHrand in this preliminary
study we have instead made use of a generate-and-test appdwscribed in Algo-
rithm 3, that evaluates each viable combinatiorif v, v3, v4), and chooses the one
with the least cost. Even when> 105, Algorithm 3 executes in just a few hundredths

Algorithm 3 : Calculating the code split points using a brute force appho

input: a set ofr frequenciesf[0 ... (n — 1)], and a radixk, with n < R*.
1: assignC[0] < 0

2: fori«—0ton—1do

3. assignC[i + 1] < C[i] + f[d]

4: assignmincost < partial_sum(0,n) x 4

5: for i, — 0to Rdo

6: forix «— OtoR—1i;do

7

8

9

for i3 < 0to R — 41 — 4> do
assignis — [(n— i1 —iaR — isR*)/R?]
if i1+ 42 + i3 + ia < Rand cost (i1, i2,13,14) < mincost then

10: assign(v1, ve, v, v4) < (i1,1%2,13,14) andmincost «— cost(i1, 12,13, %4)
11: if i1 + 92 R + i3 R? > nthen

12: break

13: if i1 + 2R > nthen

14: break

15: if i1 > nthen

16: break

output: the four partition sizes , v2, vs, andvy.

function partial_sum(lo, hi):
if lo > n then

2: assigno < n

3: if ki > nthen

4: assigni «—n

5: return Clhi] — C[lo]

function COSIf(7:17 ’i2, ig, i4)
1: return partial_sum(0,41) X 1 +
partial_sum(ii,i1 +i2R) X 2 4+
partial_sum (i1 + 2R, i1 + 2R + igRQ) X 3+
partial_sum (i1 + 2R+ i3R? i1 + 92 R + i3 R*> + 14 R®) x 4

or tenths of a second, and requires no additional space rticydar, once the cumula-

tive frequency array’ has been constructed, on average just a few hundred thousand
combinations ofiq, i2, 3, 74) are evaluated at step 9, and there is little practical gain in
efficiency possible through the use of a more principled agpgn.

4 Handling the prelude

One of the great attractions of the simplebyte coding regime is that it is completely
static, with no parameters. To encode a message, nothirgisu@quired than to trans-
mit the first message symbol, then the second, and so on thtoutpe last. In this
sense it is completelgn-line and no input buffering is necessary. On the other hand,
all of the dense codes aoéf-line mechanisms — they require that the input message be
buffered intomessage blockisefore any processing can be started. They also require
that apreludebe transmitted to the decoder prior to any of the codewortisanblock.

As well as a small number of scalar values (the size of thekbland the code
parameters, vs, v3, andvy, in our case) the prelude needs to describe an ordering of
the codewords. For concreteness, suppose that a messageditaing»n symbols in
total; that there are distinct symbols in the block; and that the largest symbehtdier
in the block isnmax.

The obvious way of coding the prelude is to transmit a pertiarnaf the alpha-
bet [Brisaboa et al., 2003a,b]. Each of theymbol identifiers requires approximately
log nmax bits, so to transmit the decreasing-frequency permutagqnires a total of
nlog nmax bits, or an overhead dfn log nmax) /m bits per message symbol. When
andnmax are small, andn is large, the extra cost is negligible. For character-leeel
ing applications, for example with ~ 100 andnmax =~ 256, the overhead is less than
0.001 bits per symbol on a block ofr = 22° symbols. But in more general applica-
tions, the cost can be non-trivial. Wherr: 10° andnmax ~ 108, the overhead cost on
the same-sized message block.& bits per symbol.

In fact, an exact permutation of the alphabet is not requiredl that is needed is
to know, for each alphabet symbol, whether or not it appeathis message block,
and how many bytes there are in its codeword. This realizddads to a better way
of describing the prelude: first of all, indicate whigkelement subset of the symbols
0...nmaxappears in the message block; and then, for each symbopiheaes, indicate
its codeword length. For example, one obvious tactic is &auBit-vector ofymax bits,
with a zero in theécth position indicating & does not appear in this message block”, and
a one in thecth position indicating that it does. That bit-vector is ttiellowed by a set
of n two-bit values indicating codeword lengths betwéemd4 bytes. Using the values
n =~ 10° andnmax =~ 10° bits, the space required would thusmgu+ 2n ~ 1.2 x 10,
or 1.14 bits per symbol overhead on a message blockef 220 symbols.

Another way in which an ordered subset of the natural numtemsbe efficiently
represented is as a sequenc@aps taking differences between consecutive items in
the set. Coding a bit-vector is tantamount to using a unatg ¢or the gaps, and more
principled codes can give better compression when the bittensity differs signifi-
cantly from one half, either globally, or in locally homogeus sections.

In a byte coder, where the emphasis is on easily decodeahlstdeams, it is natural
to use a simple byte code for the gaps. The sets of gaps foythieats with one-byte
codes can be encoded; then the set of gaps of all symbolswatbyte codes; and so
on. To estimate the cost of this prelude arrangement, weasgpihat all but a small
minority of the gaps between consecutive symbols are |esslttv, the largest value
that is coded in a single byte. This is a plausible assumptidess, for example, the
sub-alphabet density drops below arodftl. Using this arrangement, the prelude costs
approximately8n bits, and whem =~ 105 corresponds t6.76 bit per symbol overhead
on a message block af = 22° symbols.

The challenge is to further reduce this cost. One obviousibitity is to use a code
based on half-byte nibbles rather than bytes, so as to Havainimum cost of coding
each gap. But there is also another way of improving commmesffectiveness, and
that is to be precise only about high-frequency symbolstanet low-frequency ones
be assigned default codewords without their needing to eeifspd in the prelude. The
motivation for this approach is that spending prelude spadare symbols may, in the
long run, be more expensive than simply letting them be sepried with their “natural”
sparse codes.

Algorithm 4 : Determining the code structure with a semi-dense prelude.

input: an integenmax, and an unsorted array of symbol frequency counts, #ithrecording the

frequency ofs in the message block, < s < nmax; together with a threshold

: assigm «— 0

:for s — 0to Nmax do

assignf[t + s].sym «— s and f[t + s|.freq < c[s]

. identify thet largestfreq components irf[t . .. (t + nmax)], and copy them and their
corresponding symbol numbers inf@ . .. (t — 1)]

5: fors+—0tot—1do

6: assignf[f[s].sym].freqg — 0

7: assignshift < 0

8

9

BWN R

: while f[t + shift] = 0 do
assignshift «— shift + 1

10: for s < t + shift t0 nmax do

11: assignf[s — shift] — f]s]

12: use Algorithm 3 to compute , v2, vs, andwvs using thet + nmax+ 1 — shift elements now
in f[i].freq

13: sortarrayf[0... (¢t — 1)] into increasing order of theym component, keeping track of the
corresponding codeword lengths as elements are exchanged

14: transmiw,, v2, vs, @andvs and the first valuesf|0... (¢t — 1)].sym as a prelude, together
with the matching codeword lengths for thaseymbols

15: sortarrayf[0... (t — 1)] into increasing order of codeword length, with ties broksimg
the sym component

16: for each symbok in the message bloako

17: if 3z < t: flz].sym = sthen

18: codes as the integeg, usinguv:, v, vs, andvg
19: else
20: codes as the integet + s — shift, usingvi , vz, v3, anduvg

Algorithm 4 gives details of thisemi-densenethod, and Figure 2 gives an exam-
ple. Athreshold is used to determine the number of high-frequency symbolsiiich
prelude information is supplied in a dense part to the codée;adl symbols (including
those in the dense code) are allocated sparse codewordshidum-redundancy re-
stricted prefix code for the augmented symbol set is caledlas before; because the
highest frequency symbols are in the dense set, and altbtaeshortest codewords,
compression effectiveness can be traded against prelmedgiadjusting the control
knob represented by For examplet might be set to a fixed value such &$00,
or might be varied so as to ensure that the symbols that waidihally be assigned
one-byte and two-byte codewords are all in the dense set.

Chen et al. [2003] describe a related mechanism in which s{gdver a sparse al-
phabet are coded as binary offsets within a bucket, and atéunficode is used to spec-
ify bucket identifiers, based on the aggregate frequendye$ymbols in the bucket. In
their method, each bucket code is sparse and self-desgrdmid the primary code is a
dense one over buckets. In contrast, we partially permetalfphabet to create a dense
region of “interesting” symbols, and leave the unintergstines in a sparse zone of the
alphabet.

‘20‘11‘8‘5‘1‘(0)‘(0)‘1‘0‘(0)‘1‘0‘0‘1‘2‘1‘2‘

v1l=3 v3=1
00 01 10 11 prefix followed by

.-

0000 0001 0010 0011 0100 1100 1101 1110 1111

Fig. 2. Example of a semi-dense restricted prefix code Vifith- 4, nmax = 14, and a threshold
of ¢ = 4. The largest four frequencies are extracted, and the rakedfequency array shifted
right by four positions, with zeros inserted where eleméiatge been extracted. In the third row,
shift = 2 leading zeros are suppressed. The end array fiasmax + 1 — shift = 13 elements,
and is minimally represented as(ay, v2,v3) = (3,0,1) code, with a cost ol62 bits. The
modified prelude contains only four symbols, seven lessitheequired when the code is dense.

5 Experiments

Table 1 describes the four test files used to validate the p@nroach to byte coding.
They are all derived from the same source, a 267 MB file®fiL-tagged newspaper
text, but processed in different ways to generate strearimgexfer symbol identifiers.
The first two files are of particular interest, and can be mgadias respectively repre-
senting the index of a mid-sized document retrieval systemd,the original text of it.
In this example the index is stored as a sequenckg#Hps (see Witten et al. [1999] for
a description of inverted index structures), and the teixtgia word-based model.

Table 2 shows the compression effectiveness achieved expgegimental methods
for the four test files described in Table 1, when processeaisexjuence of message
blocks (except at the end of the file)af = 22° symbols. Table 2 does not include any
prelude costs, and hence only those for the basic byte ¢ed®present actual achiev-
able compression. The files j267 . repair shows the marked improvement possible
with the rpbc approach compared to tkedbc method — on this file there are almost
no one-byte codewords required, and a large number of twe-dndewords.

The first three columns of Table 3 show the additional cosepfesenting a dense
prelude, again when using blocksiaf= 22° symbols. Storing a complete permutation
of the alphabet is never effective, and not an approach #rabe recommended. Use
of a bit-vector is appropriate when the sub-alphabet dgissitigh, but as expected, the
gap-based approach is more economical when the sub-alpteimty is low.

The fourth column of Table 3 shows the cost of the semi-densleige approach
described in Section 4. It is expressed in two parts — the afostpartial prelude de-

Total Maximum n/nmax Self-information

File name and origin symbols value 1 =2%°) (bits/sym)

wsj267.1ind: Inverted indexd-gaps 41,389,467 173,252 10.4% 6.76
wsj267.seq: Word-parsed sequence 58,421,983 222,577 22.5% 10.58
wsj267.seq.bwt.mtf: Word-parsed 58,421,996 222,578 20.8% 7.61
sequence BWT’ed and MTF’ed

wsj267.repair: Phrase numbers froml9,254,349 320,016 75.3% 17.63

a recursive byte-pair parser

Table 1. Parameters of the test files. The column headefhmax’ shows the average sub-
alphabet density when the message is broken into blocksoemtainingm = 22° symbols.

File Method

bc dbc scdbc rpbc
wsj267.1ind 9.35 9.28 9.00 8.99
wsj267.seq 16.29 12.13 11.88 11.76
wsj267.seq.bwt.mtf 10.37 10.32 10.17 10.09
wsj267 .repair 22.97 19.91 19.90 18.27

Table 2. Average codeword length for different byte coding methéasch input file is processed
as a sequence of message blocks:of 2%° symbols, except at the end. Values listed are in terms
of bits per source symbol, excluding any necessary preladgonents. Only the column headed
bc represents attainable compression, since it is the onlytateloes not require a prelude.

scribing the dense subset of the alphabet, plus a valuenhagies the extent to which
compression effectiveness of thebc method is reduced because the code is no longer
dense. In these experiments, in each message block thadidésvas set to the sum

v1 + v2 R generated by a preliminary fully-dense evaluation of Aition 3, so that all
symbols that would have been assigned one-byte and twoeloges were protected
into the prelude, and symbols with longer codes were lethéngparse section.

Overall compression is the sum of the message cost and tlielpi@st. Comparing
Tables 2 and 3, it is apparent that on the file§267.ind andws j267.seq.bwt .mtf
with naturally decreasing probability distributions, wfea dense code is of no overall
benefit, and thé&c coder is the most effective. On the other hand, the comloinatf
semi-dense prelude argbc codes result in compression gains on all four test files.

Figure 3 shows the extent to which the threshddfects the compression achieved
by therpbc method on the filars j267 . seq. The steady decline through to about
200 corresponds to all of the symbols requiring one-byte cod@sgoallocated space
in the prelude; and then the slower decline through,t®0 corresponds to symbols
warranting two-byte codewords being promoted into the deegion.

Table 4 shows measured decoding rates for four byte codbesbd coder is the
fastest, and thébc andscdbc implementations require around twice as long to decode
each of the four test files. However thpbc code recovers some of the lost speed, and
even with a dense prelude, outperforms #webc anddbc methods. Part of thec
coder’s speed advantage arises from not having to decodsalprin each block. But

Prelude representation

File . - .
permutation bit-vector gaps semi-dense
wsj267.ind 0.31 0.20 0.14 0.08+0.00
wsj267.seq 0.59 0.22 0.27 0.13+0.01
wsj267.seq.bwt.mtf 0.65 0.25 0.29 0.15+0.01
wsj267 .repair 4.44 0.78 1.87 0.49+0.02

Table 3. Average prelude cost for four different representationsall cases the input file is
processed as a sequence of message blocks=6f22° symbols, except for the last. Values listed
represent the total cost of all of the block preludes, exgg@sn terms of bits per source symbol.
In the column headed “semi-dense”, the use of a partial gesbauses an increase in the cost of
the message, the amount of which is shown (fortpiec method) as a secondary component.

—— wsj267.seq
wsj267.seq, fully dense

Effectiveness (bps)
I
o

11.0 u| T T T T T T T T T T T T
1 10 100 1000 10000

Threshold t

Fig. 3. Different semi-dense prelude thresholdssed withws j267 . seq, and therpbc method.

the greater benefit arises from the absence of the mappileg &atul the removal of the
per-symbol array access incurred in the symbol translgioness. In particular, when
the mapping table is large, a cache miss per symbol genaxatessiderable speed
penalty. The benefit of avoiding the cache misses is dermatestin the final column

of Table 4 — therpbc method with a semi-dense prelude operates with a relatively
small decoder mapping, and symbols in the sparse regioredlthabet are translated
without an array access being required. Fast decoding i®thust.

6 Conclusion

We have described a restricted prefix code that obtainsrtoettepression effectiveness
than the(S, C)-dense mechanism, but offers many of the same features diticad
we have described a semi-dense approach to prelude refatsehat offers a use-
ful pragmatic compromise, and also improves compressifattdfeness. On the file
wsj267 .repair, for example, overall compression improves frah90 + 0.78 =
20.68 bits per symbol td 8.27 4 (0.49 4 0.02) = 18.78 bits per symbol, a gain of close
to 10%. In combination, the new methods also provide signifigagrthanced decoding
throughput rates compared to thg C')-dense mechanism.

File bc dbc scdbc rpbc

(none) dense dense dense semi-dense
wsj267.1ind 68 30 30 47 59
wsj267.seq 59 24 24 36 43
wsj267.seq.bwt.mtf 60 26 26 39 50
wsj267.repair 49 9 9 12 30

Table 4. Decoding speed ona8 Ghz Intel Xeon with 2 GB of RAM, in millions of symbols per
second, for complete compressed messages including aerieleach message block, and with
blocks of lengthm = 22°. Thebc method has no prelude requirement.

AcknowledgmenfThe second author was funded by the Australian Research-Coun
cil, and by the ARC Center for Perceptive and Intelligent kiaes in Complex Envi-
ronments. National ICT Australia (NICTA) is funded by the sixalian Government’s
Backing Australia’s Ability initiative, in part through ghAustralian Research Council.

References

N. R. Brisaboa, A. Farifia, G. Navarro, and M. F. Estellg¥, C)-dense coding: An optimized
compression code for natural language text databases. W.Mascimento, editorProc.
Symp. String Processing and Information Retriepalges 122—-136, Manaus, Brazil, October
2003a. LNCS Volume 2857.

N. R. Brisaboa, A. Farifia, G. Navarro, and J. R. Parama. cieffilly decodable and search-
able natural language adaptive compressiorProe. 28th Annual International ACM SIGIR
Conference on Research and Development in InformatiorieRelr Salvador, Brazil, August
2005. ACM Press, New York. To appear.

N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Parakméefficient compression code for
text databases. IRroc. 25th European Conference on Information RetrievadRech pages
468-481, Pisa, Italy, 2003b. LNCS Volume 2633.

D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Optimal alphatztifioning for semi-adaptive
coding of sources of unknown sparse distributions. In J.tére® and M. Cohn, editor&roc.
2003 IEEE Data Compression Conferengages 372—-381. IEEE Computer Society Press,
Los Alamitos, California, March 2003.

E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yatest &ad flexible word searching on
compressed texACM Transactions on Information Systerh8(2):113-139, 2000.

S. W. Golomb. Run-length encodingdEEE Transactions on Information Theorifi—12(3):
399-401, July 1966.

M. Liddell and A. Moffat. Decoding prefix codes. December 200Submitted. Preliminary
version published ifProc. IEEE Data Compression Conferen@€03, pages 392-401.

J. Rautio, J. Tanninen, and J. Tarhio. String matching vi@hger encoding and code splitting. In
A. Apostolico and M. Takeda, editoBroc. 13th Ann. Symp. Combinatorial Pattern Matching
pages 42-51, Fukuoka, Japan, July 2002. Springer. LNCSn\éRB73.

F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Comgias of inverted indexes for fast
query evaluation. In M. Beaulieu, R. Baeza-Yates, S. H. Mgaand K. Jarvelin, editors,
Proc. 25th Annual International ACM SIGIR Conference ondRezh and Development in In-
formation Retrievalpages 222—229, Tampere, Finland, August 2002. ACM Pre=s,Yérk.

I. H. Witten, A. Moffat, and T. C. BellManaging Gigabytes: Compressing and Indexing Docu-
ments and Imagedvlorgan Kaufmann, San Francisco, second edition, 1999.

