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ABSTRACT
Top-k spatial-textual queries have received significant attention in
the research community. Several techniques to efficiently process
this class of queries are now widely used in a variety of appli-
cations. However, the problem of how best to process multiple
queries efficiently is not well understood. Applications relying on
processing continuous streams of queries, and offline pre-processing
of other queries could benefit from solutions to this problem. In
this work, we study practical solutions to efficiently process a set
of top-k spatial-textual queries. We propose an efficient best-first
algorithm for the batch processing of top-k spatial-textual queries
that promotes shared processing and reduced I/O in each query
batch. By grouping similar queries and processing them simulta-
neously, we are able to demonstrate significant performance gains
using publicly available datasets.

Categories and Subject Descriptors
D.2.8 [Database applications]: Spatial-textual databases

General Terms
Algorithms, Experimentation, Performance

Keywords
Spatial-textual queries, Batch processing

1. INTRODUCTION
As a result of the increasing popularity of GPS enabled mobile

devices, the volume of content associated with both a geographic
location and a text description is growing rapidly on the web. Ex-
amples include points of interest such as stores or tourist attrac-
tions, social network posts, and location-based advertisements. In
addition, the number of queries and the need to search content with
local intent is also growing. For example, Google processes 5.7
billion searches per day, many of which are location-aware [1]. An-
other study shows that about 53% of Bing searches are geographi-
cal and have local intent [7].
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Figure 1: Example top-k spatial-textual queries

A Top-k Spatial-Textual Query is an important search task that
has been extensively studied in the literature [3, 6, 8, 10]. Given
a set of spatial-textual objects, a top-k spatial-textual query returns
the k most similar objects to the query, where the similarity measure
considers both spatial proximity and textual similarity. For exam-
ple, consider the restaurants o1,o2,o3, and o4 shown in Figure 1.
The table shows the terms and corresponding frequencies contained
in the text description of each restaurant. Let q1 be a top-1 spatial-
textual query with a location as shown in Figure 1 and the query
keywords are (“sushi”, “noodles”). Even though restaurant o1 is
closer to q1, o2 is the highest ranking result when both spatial and
textual similarity are considered for q1.

In this paper, we study the problem of Batch Processed Top-k
Spatial-Textual Queries. Our goal is to process a set of queries
in a single pass. Consider the example in Figure 1 again. Let,
q1,q2, and q3 be three different top-k spatial-textual queries to
be batch processed. Assume that k = 1 for q1 and q3, and k =
2 for q2. The queries q1 and q3 both have the query keywords
(“sushi”, “noodles”) and the query keywords of q2 are “sushi”
and “seafood”. In this example, the result returned for q1 is {o2},
q2 is {o3,o4}, and the result of q3 is {o3} when taking both spatial
and textual relevance into account.

Given a set of top-k spatial-textual queries, our aim is to compute
the results for all the queries concurrently and efficiently. The main
motivation of this problem is to improve the performance when
processing a large number of queries together, especially if the re-
sults of the queries have large overlaps. An example application
is to continuously process a stream of queries. At each time slot,
the queries that have arrived can be processed as a batch, instead of
processing individually. Consider another scenario where a large
number of similar queries are issued by the users of the same area
to get the news on a recent incident, for example, a road accident.
The batch processing can be useful to optimize the overall perfor-
mance by grouping such queries. Another application of the batch
processing is as a pre-processing step for other query types. For ex-
ample, a company might use a set of query logs to detect potential
customers who found their products in prior searches. In this case,
the results for each query in the log can be batch processed offline.

In related literature, Wu et al. [9] have studied a similar problem
called Joint Top-k Spatial Keyword Query Processing. Example
applications suggested by Wu et al. include multiple query opti-



mization by grouping/partitioning a large set of queries, and pri-
vacy aware query support by hiding a query among multiple fake
queries. These queries could also benefit from the approaches pro-
posed in this work. However, Wu et al. consider only the Boolean
top-k spatial-textual queries where a query retrieves k objects clos-
est to the query location containing all of the query keywords. The
authors proposed a new index structure, the W-IR-tree, which uses
a frequency based partitioning of the object terms for index con-
struction. This index structure and associated pruning strategies
are applicable for the Boolean top-k query where a relevant object
should contain all the query keywords, thereby, not directly exten-
sible to queries that consider both spatial and textual similarity.

To the best of our knowledge, we are the first to propose and ad-
dress the Batch Processed Top-k Spatial-Textual Query problem.
Given a set of top-k spatial-textual queries, we propose an effi-
cient algorithm that processes all of the queries concurrently us-
ing a best-first approach. The key idea of the algorithm is to share
the computation and I/O cost among all queries. This algorithm is
generic and applicable to any existing spatial-textual index struc-
ture that can answer individual top-k queries. In summary, the key
contributions of this paper are as follows:

• We introduce a novel problem, Batch Processed Top-k Spatial-
Textual Queries that is useful in many real-life applications.
• We propose an efficient best-first algorithm that greatly re-

duces the overall computational costs by sharing the process-
ing and I/O costs among the queries.
• We conduct an extensive experimental study to show the ef-

ficiency of our approach using publicly available datasets.

The rest of paper is organized as follows: Section 2 gives an
overview of the related work. Section 3 presents the problem defi-
nition. In Section 4, we describe our proposed algorithms. Finally,
the experimental evaluation is shown in Section 5, and the paper is
concluded in Section 6.

2. RELATED WORK
In this section we review relevant previous work on top-k spatial-

textual queries and the joint processing of these queries.

2.1 Top-k spatial-textual queries
Given a set of spatial-textual objects, a top-k spatial-textual query

returns a ranked list of k objects with the highest ranking scores,
where the scoring function is a combination of the distance to the
query location and the text relevance to the query keywords. Ex-
isting approaches depend primarily on variations in indexing data
structures to answer a query efficiently [3, 6, 8, 10]. However,
these methods are designed to answer queries individually. The
computations and associated I/O costs are not shared among multi-
ple queries, and queries are not processed concurrently. This leads
to many disk reads and computations to be repeated, especially if
the queries being processed are similar, i.e., the queries share a lot
of keywords and are located close in space.

2.2 Joint top-k spatial-textual queries
Wu et al. [9] studied the joint top-k spatial-textual queries, where,

given a set of queries, queries are processed jointly as a single
query. They addressed the problem for only Boolean top-k queries,
i.e., a query retrieves k objects according to the distance from the
query location that contain all the query keywords. They introduce
the W-IR-tree and a variant, the W-IBR-tree, along with the GROUP
algorithm that can be used with the W-IR-tree as well as other ex-
isting indexes, e.g., the IR-tree, the CDIR-tree [3, 8], etc. How-
ever, most of the pruning techniques proposed in [9] are limited

to Boolean top-k queries. Moreover, the authors use the minimum
bounding rectangle (MBR) of all the queries to estimate an upper
bound on the distance to the k·th nearest object. This technique
can lead to many unnecessary retrievals when the query locations
are very sparse. Therefore, we investigate other alternatives to joint
processing of top-k spatial-textual queries in our work.

3. PROBLEM STATEMENT
Let D be a geo-textual dataset where each object o∈D is defined

as a pair (o.l,o.d). Here, o.l represents the spatial location and o.d
is the associated text description. Let q = (q.l,q.d,q.k) a spatial-
textual query where q.l is the query location, q.d is the set of query
keywords and q.k is the number of objects to be returned as result.

A Top-k spatial-textual query q returns a ranked list of q.k most
relevant spatial-textual objects from D according to a relevance
function STS(o,q). Furthermore, a spatial-textual object o is con-
sidered relevant to q, iff o.d contains at least one term t ∈ q.d. The
Batch Processed Top-k Spatial-Textual Queries problem is to pro-
cess a set Q of such queries concurrently. In this paper we use the
following ranking function:

STS(o,q) = α ·SS(o.l,q.l)+(1−α) · (1−TS(o.d,q.d)) , (1)
where SS(o.l,q.l) is the spatial proximity between q.l and o.l,
TS(o.d,q.d) is the textual similarity between the query keywords
and o.d, and the preference parameter α ∈ [0,1] is used to define
the importance of one measure relative to the other. The value of
both measures are normalized within the range [0,1]. A lower value
of ST S(o,q) indicates a higher relevance between o and q.

Spatial proximity. The spatial relevance between q.l and o.l is

defined as: SS(o.l,q.l) = dist(o.l,q.l)
dmax

, where dist(o.l,q.l) is the
Euclidean distance between o.l and q.l, and dmax is the maximum
Euclidean distance between any two points in D.

Textual relevance. The text description o.d is represented by a
vector where each dimension corresponds to a distinct term in the
document. The value of a term t in o.d is computed using the lan-
guage model [5] as:

p̂(t|θo.d) = (1−λ )
tf (t,o.d)
|o.d|

+λ
tf (t,C)

|C|
, (2)

where tf (t,o.d) is the number of occurrences of the term t in o.d,
tf (t,o.d)/|o.d| is the maximum likelihood estimate of term t in o.d;
C is the concatenation of all documents in the collection, and λ is
a smoothing parameter for Jelinek-Mercer smoothing. In the lan-
guage model, the text relevance of an object o with respect to a

query q is, TS(o.d,q.d) =
∑

t∈q.d
p̂(t|θo.d)

maxP , where maxP is used to
normalize the score into the range from 0 to 1 and is computed as,
maxP = ∑

t∈q.d
max
o′∈D

p̂(t|θo′.d) .

4. PROPOSED APPROACH
We assume all objects o ∈ O are stored on disk and indexed us-

ing a spatial-textual index. We use the IR-tree [3] to index the ob-
jects. A brief overview of the IR-tree is presented in Section 4.1
and a baseline approach is described in Section 4.2. In Section 4.3,
the proposed algorithm for batch processing top-k spatial-textual
queries is presented. In addition, we discuss the effect of different
retrieval orders of the nodes of the tree in Section 4.4. The algo-
rithms are generic and independent of the indexing method used.

4.1 The IR-tree
An IR-tree is an R-tree [4] where each node is augmented with a

reference to an inverted file [11] for the documents in the subtree.
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Figure 2: A dataset of spatial-textual objects
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Figure 3: The example IR-tree tree

Each node R contains a number of entries of the form (cp,rect,cp.di).
If R is a leaf node, cp is the reference of an object o ∈D, rect is the
bounding rectangle of o, and o.di is an identifier of the text descrip-
tion. If R is a non-leaf node, then cp refers to a child node of R, rect
is the MBR of all entries of the child node, and cp.di is the identi-
fier of a pseudo text description. The pseudo text description is the
union of all text descriptions in the entries of the child node. The
weight of a term t in the pseudo-document is the maximum weight
of the weights of this term in the documents contained in the sub-
tree. Each node has a reference to an inverted file for the entries
stored in the node. A posting list of a term t in the inverted file is a
sequence of pairs 〈d,wd,t〉, where d is the document id containing
t, and wd,t is the weight of term t in d.

Figure 2 shows the locations and the text descriptions of an ex-
ample dataset O = {o1,o2, . . . ,o7} and Figure 3 illustrates the IR-
tree for O. Table 1 and Table 2 present the inverted files of the leaf
nodes (InvFile 1 - InvFile 4) and the non-leaf nodes (InvFile 5 -
InvFile 7), respectively. In this example, the weights are shown as
term-frequencies to simplify the presentation, but the actual weights
stored in the inverted files are pre-computed using Equation 2.

Table 1: Posting lists of the leaf nodes of example IR-tree
Term InvFile 1 InvFile 2 InvFile 3 InvFile 4
t1 (o1,1) (o3,5) (o5,4) (o6,1),(o7,2)
t2 (o1,4) (o5,1)
t3 (o3,5) (o6,1)
t4 (o2,1) (o4,2) (o7,3)

Table 2: Posting lists of the non-leaf nodes of example IR-tree
Term InvFile 5 InvFile 6 InvFile 7
t1 (R1,1), (R2,5) (R3,4), (R4,2) (R5,5),(R6,4)
t2 (R1,4) (R3,1) (R5,4),(R6,1)
t3 (R2,5) (R4,1) (R5,5),(R6,1)
t4 (R1,1),(R2,2) (R4,3) (R5,2),(R6,3)

4.2 Baseline approach
The baseline for batch processing of top-k spatial-textual queries

utilizes an existing algorithm [3] that processes a single query at a
time. As a batch processing problem consists of a set Q of top-k
spatial-textual queries, the baseline algorithm simply processes the
queries q ∈ Q individually.

The inputs of the baseline are a set of queries Q and a spatial-
textual index (in our example, an IR-tree) over the set of objects O.

The pseudo-code of the baseline is shown in Algorithm 1. When
processing a query q ∈ Q, a best-first traversal algorithm is used to
retrieve the top-k objects. The algorithm uses a priority queue PQ
to maintain the objects and the nodes that are yet to be visited (line
1.3). The value of STS(o,q) is used to order PQ. In each iteration,
the top node E of PQ (the most relevance node) is dequeued (line
1.6). If E is an object, E is included in the result for q (lines 1.7-
1.8). The process for a query q terminates when q.k objects have
been found (lines 1.9-1.10). Otherwise, the elements of E are read
from the disk and the elements that contain at least one query key-
word from q.d are added to the queue (lines 1.12-1.14). Finally the
algorithm returns the results for all of the queries in Q.

Algorithm 1: Baseline approach(Q, IRtree)
1.1 Initialize an array H of |Q| min-priority queues to order the top-k

results for each query.
1.2 for each q ∈ Q do
1.3 Initialize a min-priority queue PQ.
1.4 PQ← ENQUEUE(IRtree(root),0)
1.5 while PQ not empty do
1.6 E← DEQUEUE(PQ)
1.7 if E is an object then
1.8 Hq← ENQUEUE(E,STS(E,q))
1.9 if SIZEOF(Hq)≥ q.k then

1.10 break
1.11 else
1.12 for each element e ∈ E do
1.13 if q.d∩ e.d 6=∅ then
1.14 PQ← ENQUEUE(e,STS(e,q))

1.15 return H

A trace of processing required for the baseline is sketched in
Table 3 where the data from Figure 2 for the queries q1,q2, and
q3 are used. Here, α = 0.5, q1.d = {t2, t3}, q1.k = 1; q2.d = {t1},
q2.k = 2; and q3.d = {t1, t3}, q3.k = 1.

Table 3: The example steps of the baseline approach
Query E PQ Hq

q1 R7 (R6,0.2),(R5,0.4) −
R6 (R3,0.3),(R4,0.4),(R5,0.4) −
R3 (o5,0.3),(R4,0.4),(R5,0.4) −
o5 (R4,0.4),(R5,0.4) o5

q2 R7 (R5,0.1),(R6,0.5) −
R5 (R1,0.2),(R2,0.3),(R6,0.5) −
R1 (o1,0.2),(R2,0.3),(R6,0.5) −
o1 (R2,0.3),(R6,0.5) o1
R2 (o3,0.4),(R6,0.5) o1
o3 (R6,0.5) o1,o3

q3 R7 (R5,0.1),(R6,0.6) −
R5 (R1,0.2),(R2,0.25),(R6,0.6) −
R1 (R2,0.25),(o1,0.3),(R6,0.6) −
R2 (o3,0.26),(o1,0.3),(R6,0.6) −
o3 (o1,0.3),(R6,0.6) o3

In the baseline, a node of the tree might be retrieved multiple
times for different queries, which can result in high I/O costs. For
instance, the nodes R1,R2,R5 and the objects o1,o3 all are retrieved
twice from the disk in this example. To overcome this drawback,
we propose an efficient solution using batch processing of the queries,
where a node is guaranteed to be retrieved at most once.

4.3 The batch processing algorithm
In this approach, if multiple queries require the retrieval of the

same node, that node is guaranteed to be retrieved from disk at most
once during the process. The pseudo-code is shown in Algorithm 2.

In order to process all of the queries in a single pass, two ar-
rays of priority queues of size |Q| are necessary. First, a min-
priority queue Hq is maintained for each query q ∈ Q to store the



top-k results (line 2.1). For each query q ∈ Q, we also maintain a
min-priority queue PQq to track the relevant nodes and the objects,
where the key is the corresponding relevance score for q. The al-
gorithm will continue to execute as long as the set Q is non-empty.

In each iteration, a priority queue PQr is selected at random and
the top element E of that queue is processed (lines 2.6-2.7). We
explain the reasoning behind this selection method and discuss the
effect of other selection orders in Section 4.4. If E is an object,
the top element o of PQq is dequeued and inserted into Hq as long
as o is an object and Hq has less than q.k elements for each PQq
(lines 2.8-2.12). In this manner, all the queries that have any object
including E in the top of their queues are considered. If PQq is
empty or Hq has q.k elements then q is marked as finished, and
discarded from further computation (lines 2.13-2.14).

If E is not an object, then the elements of E are read from disk.
For each query q ∈ Q, if the corresponding PQq contains E, the el-
ements of E that have at least one keyword of q.d are enqueued in
PQq. The node E is then removed from these queues (lines 2.16-
2.22). The process terminates when the results for all of the queries
in Q are found. Finally, the results represented as an array of prior-
ity queues H is returned.

Algorithm 2: Batch processing Top-k(Q, IRtree)
2.1 Initialize an array H of |Q| min-priority queues to order the top-k

results for each query.
2.2 Initialize an array PQ of |Q| min-priority queues to track node

traversal for each query.
2.3 for each q ∈ Q do
2.4 PQq← ENQUEUE(IRtree(root),0)

2.5 while Q not empty do
2.6 Select PQr randomly.
2.7 E← TOP(PQr)
2.8 if E is an object then
2.9 for each q ∈ Q do

2.10 while PQq not empty and SIZEOF(Hq)< q.k and
TOP(PQq) is an object do

2.11 o← DEQUEUE(PQq)

2.12 Hq← ENQUEUE(o,STS(o,q))
2.13 if PQq is empty or SIZEOF(Hq)≥ q.k then
2.14 Mark q finished.

2.15 else
2.16 READ(E)
2.17 for each q ∈ Q do
2.18 if E ∈ PQq then
2.19 for each element e ∈ E do
2.20 if q.d∩ e.d 6=∅ then
2.21 PQq← ENQUEUE(e,STS(e,q))

2.22 Remove E from PQq.

2.23 Return H

Using other index structures. The key idea of the algorithm is
share the I/Os and processing among queries. When an object is
retrieved from the disk for a query, the score of the object is up-
dated for all the queries that share this object in their corresponding
queues. The other processing steps of the Algorithm 2 are same as
the processing of a single query. Therefore, this algorithm is easy
to extend for other index structures.

4.4 Selection order of the nodes
In this section we discuss the selection order of the tree nodes in

each iteration of our algorithm.

Arbitrary selection. Recall that for each query q, the correspond-
ing priority queue PQq is sorted according to the maximum rele-
vance of nodes. Although in each iteration, the top element E is

dequeued for a random query, all of the queries that have any ob-
ject including E in the top of their queues are considered in lines
2.10-2.14 in the same iteration. Thus, we are applying a best-first
approach not only for the query qr, but also for other queries con-
currently in each iteration. Moreover, only those nodes and objects
are retrieved that are also required for individual processing, and a
node or an object is retrieved only once.

In the best-first approach, the computation for a query q can be
safely terminated iff q.k objects are found or PQq is empty. The
lines 2.13-2.14 ensure the terminating conditions for all queries re-
gardless of the selection of E. Therefore, the algorithm is actually
independent of the retrieval order of the nodes. We explain this
further by contrasting with another retrieval order in the following.

Selecting the node that is the top one in the maximum number
of queues. Let the node E that is the top element of the maximum
number of queues be selected in each iteration. According to lines
2.10-2.12, if E is an object, then any object including E that is in
the top of any queue is checked for being a result object of the
corresponding query. If E is not an object, then the elements of E
are enqueued in PQq if they have at least one keyword of q.d and
PQq contains E. In both conditions, all of the computations are the
same as selecting E randomly. The computations do not rely on the
selection of E.

Moreover, keeping track of the node that is the top of the max-
imum number of queues in each iteration may require some extra
computation. Therefore, the random selection of a node is prefer-
able. Table 4 demonstrates the execution of Algorithm 2 for the
data from Figure 2. Note that the total number of iterations will
be the same for any order of selecting E. As shown in the table,
the priority queues of the queries are initialized with the root node
of the tree. Consider iteration 2 as an instance where node R5 is
selected. Node R5 is present in the priority queues of the queries
q2 and q3, so the elements of R5 – R1 and R2 – are retrieved from
disk. Node R1 and R2 are enqueued in the priority queues of q2 and
q3 along with the corresponding relevance scores. Then, node R5
is removed from these queues.

5. EXPERIMENTAL EVALUATION
In this section, we present our results on evaluating the per-

formance of our proposed algorithm for Batch Processed Top-k
Spatial-Textual Queries and compare it with the baseline approach.
All indices and algorithms are implemented in Java. The exper-
iments were ran on a 24 core Intel Xeon E5− 2630 running at
2.3 GHz using 256 GB of RAM, and 1TB 6G SAS 7.2K rpm SFF
(2.5-inch) SC Midline disk drives. The Java Virtual Machine Heap
size was set to 4 GB. All index structures are disk resident, and the
page size was fixed at 4 kB.

5.1 Dataset and queries
All experiments are conducted using the Yahoo I3 Flickr dataset 1. A
total of 1 million image tags that are geo-tagged and contain at least
one user specified tag were extracted from the collection and used
for the experiments. The locations and tags are used as the location
and text description of the spatial-textual objects in our problem.
Table 5 lists the properties of the dataset. To evaluate scalability,
three additional datasets of 2 million, 4 million, and 8 million were
extracted from the collection, and are used where the spatial and
term distribution of the objects are almost the same.

We generate the query sets using the dataset as follows. First, an
object is picked randomly from the dataset and the location of the
1http://webscope.sandbox.yahoo.com/catalog.php?
datatype=i&did=67



Table 4: The example steps of the batch processing approach
Iteration E PQq Hq

(R7,0.0) −
(R7,0.0) −
(R7,0.0) −

1 R7 (R6,0.2),(R5,0.4) −
(R5,0.1),(R6,0.5) −
(R5,0.1),(R6,0.6) −

2 R5 (R6,0.2),(R1,0.5),(R2,0.6) −
(R1,0.2),(R2,0.3),(R6,0.5) −
(R1,0.2),(R2,0.25),(R6,0.6) −

3 R1 (R6,0.2),(o1,0.6),(R2,0.6) −
(o1,0.25),(R2,0.3),(R6,0.5) −
(R2,0.25),(o1,0.3),(R6,0.6) −

5 o1 (R6,0.2),(o1,0.6),(R2,0.6) −
(R2,0.3),(R6,0.5) o1

(R2,0.25),(o1,0.3),(R6,0.6) −
6 R2 (R6,0.2),(o1,0.6),(o3,0.7) −

(o3,0.4),(R6,0.5) o1
(o3,0.26),(o1,0.3),(R6,0.6) −

7 o3 (R6,0.2),(o1,0.6),(o3,0.7) −
(R6,0.5) o1,o3

(o1,0.3),(R6,0.6) o3
8 R6 (R3,0.3),(R4,0.4),(o1,0.6),(o3,0.7) −

- o1,o3
- o3

9 R3 (o5,0.3),(R4,0.4),(o1,0.6),(o3,0.7) −
- o1,o3
- o3

10 o5 - o5
- o1,o3
- o3

Table 5: Description of dataset

Property Cardinality

Total number of objects 1,000,000
Total number of unique terms 166,317
Average number of unique terms per object 6.9
Mode number of unique terms per object 3
Total number of terms in dataset 6,936,385

object is used as the query location. Then, a pre-defined number of
words are randomly selected from the object as the query keywords.
A pre-defined number of these queries are created to be the set
of input queries Q for the batch processing problem. The default
number of queries in a batch is 100. In this work, we generate 100
such batches and report the average performance.

5.2 Performance Evaluation
In this section, we evaluate the performance of the baseline and

our proposed approach described in Section 4.3 by varying the pa-
rameters listed in Table 6. In all experiments, we employ the de-
fault settings to study the impact on: (i) the mean I/O cost (number
of pages accessed) per query (MIOCPQ) of a batch; and (ii) the
mean runtime per query (MRPQ) of a batch, while varying a sin-

Table 6: Parameters

Parameter Range Default

k 1,5,10,20,50 10
α 0.1,0.3,0.5,0.7,0.9 0.5
|Q| 100,200,400,800,1600 100
No. of query keywords 1,2,3,4,5,6 3
No. of unique query keywords, w 5,10,20,50,100 20
No. of objects 1M, 2M, 4M, 8M 1M
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gle parameter. As multiple layers of cache exist between a Java
application and the physical disk, we report simulated I/O costs in
the experiments instead of physical disk I/Os. The number of simu-
lated I/Os is increased by 1 when a node of the tree is visited. When
an inverted file is loaded, the number of simulated I/Os is increased
by the number of blocks (4 kB per block) for storing the list.

In the experiments, the performance is evaluated using cold queries.
The runtimes for multiple runs are shown as boxplots, where each
boxplot summarizes the values as follows: the solid line indicates
the median; the bounding box shows the first and third quartiles; the
whiskers show the range, up to 1.5 times of the interquartile range;
and the outliers beyond this value are shown as separate points. The
average values are shown as connecting lines.

Varying k. In this experiment, we vary the value of k and investi-
gate the effect. The result is shown in Figure 4. Here, both the run-
time and the I/O cost for each method increase as k increases. Since
the batch processing algorithm visits the disk pages only once if
they are shared among the queries, the cost of our proposed method
is significantly lower than the baseline. Furthermore, the advantage
of the batch processing algorithm increases when k increases. The
height of the boxplots indicate that the runtime of multiple runs do
not differ much from one another.

Varying α. Figure 5 reports the result of the experiment where we
study the effect of varying α . A higher value of α indicates more
preference to spatial similarity. As the location of queries in a batch
is expected to be sparse, a higher value of α leads to fewer shared
IR-tree nodes. Therefore, the cost of batch processing increases as
α increases. On average our algorithm requires 4 times less I/O
than the baseline.

Varying the number of keywords per query. We vary the num-
ber of keywords per query in a batch from 1 to 6 and investigate
the effect on performance in Figure 6. The mean I/O cost per query
(MIOCPQ) and the mean runtime per query (MRPQ) in the base-
line method increases proportionally with the increase in the num-
ber of keywords per query in a batch, as more nodes become rele-
vant to these queries. In contrast, the I/O cost in our proposed algo-
rithm remains almost constant as a node is retrieved at most once
and processed for all queries concurrently. The runtime of our al-
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gorithm increases with the increase in the number of keywords per
query though, as the number of similarity computations increases
with number of query keywords. Our algorithm outperforms the
baseline for both metrics, where the difference in performance is
higher for higher number of query keywords.

Varying the number of unique query keywords in a batch (w).
Figure 7 shows the effect on performance for varying the total num-
ber w of unique query keywords in a batch. A lower value indicates
the queries share more common keywords. As shown in Figure 7,
the costs increase with the increase of w for both methods. Our pro-
posed method outperforms the baseline when there is a high overlap
among the queries in a batch. The baseline starts to outperform in
terms of I/O cost and runtime when w is greater than approximately
70 and 40, respectively.

Scalability. We vary the number of queries |Q| in a batch, and
the total number of objects in the dataset to evaluate scalability.
Figure 8a shows the effect of varying |Q| on the total I/O cost of
processing a batch of queries. As the number of queries increases,
the cost of the baseline increases proportionally as it processes the
queries one by one. Although the cost of our algorithm increases
as the number of queries increases, it is significantly less than the
cost of the baseline as it visits each node at most once.

Figure 8b shows the performance when varying the number of
objects in the dataset. The total I/O cost of both methods increase
with the increase in the number of objects as more nodes are re-
quired to be retrieved. The baseline requires approximately 2 times
more I/O than our proposed approach. The effect on runtime shows
similar trend for varying both parameters.

6. CONCLUSION
This paper explored batch processing algorithms for efficient

processing of top-k spatial-textual queries. The problem has sev-
eral real-life applications. We have proposed a baseline derived
from state-of-the-art approaches to single query processing, and
extended the approach to support efficient batch processing. Our
algorithm can improve the overall efficiency of batch processing
significantly by sharing processing and I/O costs of the queries.
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Figure 8: Scalability
Through extensive experiments using publicly available datasets,
we show that our approach outperforms the baseline in terms of
I/O costs and total runtime. Our approach is particularly amenable
to queries which share a large number of keywords, and/or are in
close proximity to each other. In future work, we will explore al-
ternative algorithms to minimize computational costs in groups of
queries, and explore efficient approaches to group similar queries
into batches in realtime.
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