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ABSTRACT

Modern multi-stage retrieval systems are comprised of a candidate
generation stage followed by one or more reranking stages. In such
an architecture, the quality of the final ranked list may not be sen-
sitive to the quality of the initial candidate pool, especially in terms
of early precision. This provides several opportunities to increase
retrieval efficiency without significantly sacrificing effectiveness.
In this paper, we explore a new approach to dynamically predict-
ing the size of an initial result set in the candidate generation stage,
which can directly affect the overall efficiency and effectiveness of
the entire system. Previous work exploring this tradeoff has fo-
cused on global parameter settings that apply to all queries, even
though optimal settings vary across queries. In contrast, we pro-
pose a technique that makes a parameter prediction to maximize
efficiency within an effectiveness envelope on a per query basis,
using only static pre-retrieval features. Experimental results show
that substantial efficiency gains are achievable. In addition, our
framework provides a versatile tool that can be used to estimate the
effectiveness-efficiency tradeoffs that are possible before selecting
and tuning algorithms to make machine-learned predictions.
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1. INTRODUCTION

Effectiveness-efficiency tradeoffs have been extensively explored
in search engine architectures: Highly-effective ranking models of-
ten take advantage of computationally expensive features and hence
are slow, while fast ranking algorithms often sacrifice effective-
ness. In a modern multi-stage ranking architecture [1, 2, 3, 7, 22,
23, 26], an initial candidate generation stage is followed by one or
more rerankers, and the end-to-end effectiveness-efficiency trade-
offs are often a combination of many different component-level
tradeoffs. In this work, we focus on the initial candidate generation
stage, whose responsibility is to provide an initial set of documents
that are then considered in more detail, for example, by machine-
learned rankers [5, 6]. Previous work [3] has shown that the quality
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of the final ranked list is relatively insensitive to the quality of the
initial candidate set, especially in terms of early precision. The
intuition is as follows: as long as the candidate generation stage
can supply a “reasonable” pool of documents, it is likely that later-
stage rankers can identify the best documents and place them in
high ranking positions, regardless of the original rank scores. If the
final ranked list is assessed in terms of, say, NDCG@ 10, the initial
candidate pool only needs to contain ten documents of the highest
relevance grade to achieve the best possible score—provided that
the later-stage rankers identify these documents (which is largely
an orthogonal issue).

In this work, we explore how to dynamically predict the size of
the candidate pool k. In a standard document-at-a-time query eval-
uation algorithm, query evaluation latency increases as a function
of k. A large candidate document pool also means greater cost in
the feature extraction and reranking stages downstream. Thus, we
desire a k as small as possible while remaining within an effective-
ness envelope.

Our Contributions. The key contribution of our work is to show
that we can achieve substantial savings in candidate generation
efficiency in multi-stage ranking without sacrificing effectiveness,
tuned on a per query basis, using only static pre-retrieval features.
We accomplish this by building classifier cascades that make bi-
nary decisions at several different cutoffs along an effectiveness-
efficiency tradeoff curve. In addition, a key feature of our approach,
worth emphasizing, is that we are able to train these classifier cas-
cades without requiring relevance judgments, which overcomes a
limitation with previous studies since relevance judgments restrict
the scope of their experiments to at most a few hundred queries (at
least in the academic context). In contrast, we are able to run ex-
periments on tens of thousands of queries. This can be achieved by
leveraging a recently-introduced evaluation technique called Max-
imized Effectiveness Difference (MED) [11, 31]. Our experimen-
tal results show substantial improvements over selecting a fixed &k
without lowering effectiveness, which can translate directly into ef-
ficiency improvements in later stage reranking.

2. BACKGROUND

We assume a standard formulation of the ranked retrieval prob-
lem, where given a user query g, our goal is to return a ranked list
that maximizes a particular metric. In the web context, the metric
would likely emphasize early precision, e.g., NDCG@10. In this
section, we discuss tradeoffs between effectiveness and efficiency
in the context of multi-stage ranking.

2.1 Multi-Stage Ranking Efficiency

Multi-stage retrieval systems have become the dominant model
for efficient and effective web search [1, 2, 3, 7, 22, 23, 26]. The
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Figure 1: Illustration of a multi-stage retrieval architecture with
distinct candidate generation, feature extraction, and document
reranking stages.

key idea of this approach is to efficiently generate a set of candi-
date documents that are likely to be relevant to a query, and then
iteratively reorder the documents using a series of more expensive
machine learning techniques. As the cost of the later stage reorder-
ing can be computationally expensive, minimizing the number of
candidate documents in early stage retrieval can yield significant
benefits in overall query processing time. Kohavi et al. [17] stated
that every 100 ms boost in search speed increases revenue by 0.6%
at Bing. Thus, even small gains in overall performance can trans-
late into tangible benefits in commercial search engines.

The simplest example of a multi-stage retrieval architecture is
shown in Figure 1, from Asadi and Lin [2]. The input to the can-
didate generation stage is a query ¢ and the output is a set of k
document ids {d1,d2,...dr}. In principle, the candidates can
be treated as a list or a set—the difference is whether subsequent
stages take advantage of the document score or ranking. These
document ids serve as input to the feature extraction stage, which
returns a list of k feature vectors {f1, f2, ...fx }, each correspond-
ing to a candidate document. These serve as input to the document
reranking stage, which typically applies a machine-learned model
to produce the final ranking. Of course, there can be an arbitrary
number of reranking stages. For example, Pedersen [26] describes
a four-stage retrieval architecture in Bing, shown in Figure 2. The
key take-away message is that increasingly expensive reranking
steps may require processing fewer and fewer documents.

It is important to emphasize that the size of the candidate pool of
documents k is independent of the size of the final ranked list (with
only the hard constraint that the final size cannot be greater than k).
So, what is the proper setting of £? The work of Macdonald et al.
[22] suggests several different answers: “tens of thousands” (Chap-
pelle and Chang [10]), 5,000 (Craswell et al. [12]), 1,000 (Qin et al.
[29]), or smaller samples such as 200 (Zhang et al. [34]) or even 20
(Cambazoglu et al. [7]). Of course, the larger the k, the slower
the system, in two respects: First, in standard document-at-a-time
query evaluation algorithms that would provide the initial candidate
documents (e.g., WAND), k has a direct impact on query latency,
since a larger heap needs to be maintained, providing fewer oppor-
tunities for early exits, depending on document score distributions.
Second, for every document in the candidate pool, we need to run
the feature extractors to serve as input to the subsequent reranking
stages (see Figure 1). Thus, from an efficiency perspective, it is
clear that we desire the smallest possible k that allows end-to-end
effectiveness to remain within some bounded envelope (see below
for more details).

Note that our work focuses on the size of the candidate pool for
the purposes of ranking at query time. In contrast, Macdonald et al.
[22] focused on the importance of candidate pool size for the train-
ing of learning-to-rank systems. In particular, they looked at how
the size of the candidate set affects the final results, arguing that the
relationship is dependent on the type of information need. They
show that as few as 10-20 documents may be needed for TREC
2009 and 2010 Web Track queries, but as many as 1,500 may be
needed for other queries in the same corpus. Since we are primarily
concerned with the application of machine-learned models at query

(10" Docs)

L3 (10° Docs)

L2 Reranking (10° Documents)

LO/L1 Matching/Ranking (10'° Documents)

Figure 2: A four-stage retrieval architecture originally described by
Pedersen [26].

time and are not directly concerned with model training, the work
of Macdonald et al. [22] is orthogonal to our study.

The closest related work to ours is that of Tonellotto et al. [32],
who also attempt to tune effectiveness-efficiency tradeoffs on a
per query basis using query difficulty and query efficiency predic-
tion techniques. However, their choice of settings is rather coarse
grained: they only select between two configurations, whereas our
classifier cascades are able to consider many more settings. Fur-
thermore, their work exhibits the same limitation as most previous
studies in requiring relevance judgments for training, and hence
they are only able to experiment on 150 queries from TREC 2009—
2011. In contrast, since our approach does not require any rele-
vance judgments, we can tune our techniques on tens of thousands
of queries, as we will discuss next.

2.2 Multi-Stage Ranking Effectiveness

Tuning ranking parameters requires substantial amounts of train-
ing data to measure effectiveness. Fortunately, in the case of tuning
candidate generation for a second-stage ranker (see Figure 1), we
have this training data readily available, since the second stage it-
self may be enlisted to provide it. To create this training data we
first run the second-stage ranker over a very large candidate set,
much larger than time might allow for interactive search. Concep-
tually this candidate set might be the entire collection, but practi-
cally it will be limited to a subset retrieved from query keyword
matches and other simple features. Ideally, this set would contain
all relevant documents, but mixed together with many non-relevant
documents.

The second-stage ranker then ranks this set, producing a ranked
list A. Given the potential size of the set, producing this ranking
may take substantial time. However, while this time may be far
greater than would be tolerable for interactive searching, when cre-
ating training data, time is not a problem.

Now, suppose we have a more efficient candidate generation al-
gorithm, designed to feed this second-stage ranker. It produces a
much smaller set, which can be more efficiently ranked by the sec-
ond stage to produce a ranked list B. We measure the effectiveness
of the candidate generation algorithm according to its ability to sup-
ply the documents that the second stage needs in the absence of ef-
ficiency constraints (A in this case). More specifically, we compute
arank correlation coefficient or rank similarity measure between A
and B, using its value S(A, B) as our effectiveness metric.

Naturally, the similarity measure must be suitable for this pur-
pose [33]. In particular, a rank similarity measure for search results
must be appropriately top-weighed, placing greater emphasis on
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Figure 3: Correlation between MEDggp and measured average pre-
cision using the 50 queries of the TREC 2010 Web Track adhoc col-
lection and the IvoryL2Rb experimental run as the second stage.
Each of the 279 points represents one of 31 distinct first stages,
across a range of parameter settings. The dashed line indicates the
effectiveness of the second stage with no early-stage filter. Repro-
duced from Tan and Clarke [31].

earlier ranks than on later ranks. If the top document in A is miss-
ing from B, the impact on the user will be much greater than if the
100th document is missing.

Tan and Clarke [31] describe a family of rank similarity mea-
sures specifically intended for comparing ranked lists produced by
search engines. Given a traditional effectiveness metric — such as
MAP [30], RBP [25], DCG [15], or ERR [9] — Tan and Clarke
define a distance measure between two ranked lists in terms of that
metric, as follows: “Given two ranked lists, A and B, what is the
maximum difference in their effectiveness scores possible under
[that metric].”

They call this family of distance measures maximized effective-
ness difference (MED(A, B)) and develop variants corresponding
to several standard effectiveness metrics — including MEDwap,
MEDgrgp, MEDpcg, and MEDggrg. They explore MED as a method
for quantifying changes to ranking algorithms without the need for
human relevance judgments. For example, MED allows a search to
identify queries for which a proposed change causes the greatest
impact. An open-source implementation is publicly available on-
line,' which can be used to compute MED for various effectiveness
measures, and is used in this paper.

Building on this work, we have recently applied MED to mea-
sure effectiveness of the initial stages in multi-stage rankers [11].
That work follows the procedure outlined above, using a second-
stage ranking as a gold standard to measure first-stage effective-
ness, validating this procedure. Unlike previous explorations of
effectiveness-efficiency tradeoffs, the absence of any requirement
for human relevance judgments allows the procedure to be easily
applied across tens of thousands of queries.

For illustration purposes, Figure 3 is reproduced from that pa-
per. The figure shows the performance of a number of first-stage
rankers, operating over a range of parameter settings, supplying a
high-quality second-stage ranker. The horizontal dashed line indi-
cates the effectiveness of the second-stage ranker without first-stage

Thttps://github.com/claclark/MED

filtering. Values of MEDRgrgp below 0.05 produce no practical loss
in measured effectiveness.

In this range, MED is measuring shortcomings in the first-stage
that are not necessarily reflected in the evaluation measures. A
first-stage ranker that fails to return the top document required by
the second stage will receive a lower MED score than a first-stage
ranker that fails to return the sixth document. While other relevant
documents might move up to replace the lost documents, leaving
both with the same measured effectiveness, losing the top-ranked
document is penalized by the metric more than losing lower-ranked
documents.

Previous work explored effectiveness-efficiency tradeoffs of first-
stage algorithms and their parameter settings as applied uniformly
across all queries [11]. However, optimal algorithms and settings
vary across queries. In this paper, we explore a technique for op-
timizing effectiveness-efficiency tradeoffs on a per-query basis, se-
lecting the optimal algorithm and setting for each using static, pre-
retrieval features. While we focus specifically on the two-stage
architecture in Figure 1, our methods should generalize to larger
multi-stage architectures, such as the one shown in Figure 2, with
the effectiveness of each stage measured in terms of the next.

3. APPROACH

Feature Selection. Simple term features have been used success-
fully in a variety of different learning-to-rank scenarios [18, 20, 22,
23] and in query difficulty prediction [8, 16, 21]. Across all of these
studies one general theme has emerged — a mixture of similarity
measures and query-specific score aggregation techniques yield the
most benefit. Inspired by previous work, we adopt this philosophy
in our feature choices as well. We use three simple similarity mea-
sures in this work: BM25, TF-IDF, and query likelihood.

These similarity formulations were used since each can easily be
precomputed for all term—document combinations and treated as
independent term-specific features. In addition to the three simi-
larity scoring regimes, we also adopt several different score aggre-
gation techniques, and compute a variety of static statistical fea-
tures for each term posting: maximum score, arithmetic mean of
scores, harmonic mean of scores, median of scores, variance of
scores, first quartile score, third quartile score, and the number of
documents containing the term. Additional query-specific features
are also incorporated into the model including query length, mini-
mum and maximum feature score across all terms in the query, and
means (arithmetic and harmonic) of the query-specific term scores.
Table 2 provides a comprehensive breakdown of the term-specific
features, each of which can be computed at index time. Table 3
shows how each of the term-specific features are combined into the
final feature set used by the classifier. A total of 70 features are
used in our work.

Labeling Instances. We now turn our attention to how the train-
ing collection was created. One of the key ideas of this work is
to use MED to determine a minimal candidate set that also max-
imizes the possible effectiveness in the final reranking stage. In
order to achieve this, we have created a gold standard set using
40,000 queries from the 2009 TREC Million Query Track. For
each query, MEDgrgp, MEDgrr, and MEDpcg are computed for
the k values of 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, and
10,000. Our gold standard run for tuning k was the uogTRMQdph40
run, as it represents one of the top-scoring systems that returned re-
sults for all 40,000 of the MQ2009 queries (when measured over
the small subset of the queries that were evaluated).
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Topic 5 50 100 200 500 1,000 2,000 5,000 10,000
20001 0.544 0346 0.104 0056 0.010 0.002 0.001 0.000 0.000
20002 0.536  0.142  0.053 0.016 0.002 0.000 0.000 0.00  0.000
20003 0.865 0.856 0.810 0.773 0706 0.684 0582 0.122  0.000
20004 0999 0944 0.132 0.070 0018 0.008 0.008 0.00  0.000

Table 1: The MEDrgp scores for the first four topics in the TREC MQ2009 collection at 9 different cutoffs for k. If a maximum loss of 0.05
is the target cutoff, then the boldface values represent the k “class” for each topic.

Term Statistics

. Number of documents containing term ¢ (f¢).
. Maximum Similarity Score

. First Quartile Similarity Score

. Third Quartile Similarity Score

. Arithmetic Mean of Similarity Scores
Harmonic Mean of Similarity Scores

. Median of Similarity Scores

. Variance of Similarity Scores

N I Y N

Table 2: Query-independent term features used by the classifier.
Each feature can be precomputed and stored with the postings list.

Query Features (Score Dependent)

. Arithmetic Mean of ¢

. Harmonic Mean of Maximum Scores

. Arithmetic Mean of Maximum Scores

. Arithmetic Mean of Median Score

. Arithmetic Mean of Mean Scores

. Arithmetic Mean of Score Variances

. Arithmetic Mean of Score Interquartile Ranges

. Minimum Score of terms in the query for each feature
in Table 2.

9. Maximum Score of terms in the query for each feature
in Table 2.

el B SR R I R

Query Features (Score Independent)

1. Query Length

Table 3: Query-specific features used by the classifier. All score-
dependent features can be computed on the fly for all three similar-
ity metrics at query time using prestored values in Table 2.

Thus, in total we computed MED using three different metrics
at 9 distinct cutoffs for k. To label the instances, we now select
a sufficiently low value of a given metric, say MEDgrgp < 0.05,
and choose the minimal cutoff that satisfies this constraint — this is
what we have previously referred to as the “effectiveness envelope”
we would like to maintain.

For example, consider the MEDgrgp computations for the first
four topics shown in Table 1. If the minimal acceptable score is
MEDggp < 0.05, then for Topic 20001, the nominal class assigned
would be k& = 500, whereas Topic 20002 can achieve a similar
MED score with k& = 200.

Multilabel Classification and Regression. The most obvious so-
lution from a machine learning perspective is to train a multilabel
classifier or to use regression. We have explored both possibilities
in our early empirical analysis but found that neither approach was
reliably better than using a fixed cutoff baseline.

Algorithm 1 LRCASCADE

Input: A query ¢, a minimum confidence threshold ¢, and a set of
¢ — 1 binary classifiers C
Output: A cutoff prediction between 1 and c.
I: fori =1toc— 1do
2 p < PREDICT(C};,q)
3 if p = 0 and Pr(p) > t then
4: Return ¢
5: end if
6: end for
7: Return c

After careful examination of the preliminary results, a clear con-
straint emerged in producing good results in our classifier: any
under-prediction can significantly hurt overall effectiveness, and
thus should be avoided. A standard approach to reweight classifica-
tion is to use a cost-sensitive classifier [14] such as MetaCost [13].
Our experiments with a cost-sensitive classifier that penalized the
classifier for under-predicting were more promising than regression
or standard multilabel classification, but still not better than using
a fixed baseline.

There has also been recent work on building cost-sensitive re-
gression algorithms [35], but this is still an active area of research
and beyond the scope of our work. One limitation of regression is
that the MED values must be computed for every value of k, and
out-of-the-box loss functions do not produce competitive results.
Clearly, regression is a promising alternative to the approach we
have developed, but we leave this to future work as it will require a
custom loss function in order to achieve similar results to the cas-
cade classifier that we describe shortly. Instead, we extend another
common technique in regression — choosing a fixed threshold and
creating a binary classifier. However, we found that a single thresh-
old was not sufficient for our needs, and that the approach could be
extended to make a series of binary predictions to find the best cut-
offs. We explain the mechanics of this technique next.

Cascaded Classification. Our approach to prediction relies on a
cascade of binary classifiers. Since classes are ordinal and should
be treated as such, a series of binary predictions can be used to find
the minimum cutoff for each query that also maximizes the overall
effectiveness in the final document reordering stage. In this work,
a random forest classifier [4] is trained and used for predictions at
each stage of the cascade. Before building the classifier, training
sets can be created from a multilabeled class set. The number of
binary classifiers required is ¢ — 1, where c is the maximum ordinal
label. Labels are monotonically increasing from 1 to c.

Once the binary classifiers are constructed, it is relatively sim-
ple to make a prediction for any query q. A feature set can easily
be constructed at query parsing time which is then used by Algo-
rithm 1 to assign a cutoff for the query. A left-to-right cascade
serves two important purposes. First, the model implicitly mini-
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Figure 5: MEDrgp versus k using a training threshold cutoff of MEDgrgp < 0.05 (left panel) and MEDgrgp < 0.10 (right panel) for the
MQ2009 queries on ClueWeb09B. The blue star represents the best possible result achievable with a perfect classifier, the green line is the
result using our LR Binary Cascade Model, and the red line represents the tradeoff horizon based on using a fixed k (baseline) for all queries.
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Figure 4: A left-to-right nine class cascade. Each node is a bi-
nary, random forest classifier. If the classifier predicts 0 with a
probability Pr(p) > ¢, the current node ID is written as the class.
Otherwise, the instance is passed to the next classifier in the chain.

Q Binary Random Forest Classifier

,,,,,, Predict 1 or ( Predict 0 and Pr(p) < t)

mizes the likelihood of a false positive as assignments are made
smallest to largest, and exits only occur for high probability predic-
tions. Second, each prediction has a small cost. In a left-to-right
cascade, queries with the smallest cutoff incur the least amount of
processing time. If a larger cutoff is required, the cost of extra pre-
dictions is small relative to the cost of more expensive reordering
stages of large candidate sets later in the scoring process.

Figure 4 shows an example of a left-to-right nine class cascade
of binary classifiers. Each node in the tree is a binary random for-
est classifier pre-trained using one of 5 training sets. By increasing
the cutoff threshold ¢, the percentage of under-predictions is de-
creased at the cost of increasing the percentage of over-predictions.
However, some level of over-prediction is acceptable as this always
results in a gradual increase in overall effectiveness.

4. EXPERIMENTS

Experimental Configuration. For all experiments, 40,000 queries
from the 2009 Million Query Track (MQ2009) were used with a
stopped and unpruned ClueWeb 2009 category B index (CW09B).

The uogTRMQdph40 system is used as the gold standard, as it rep-
resents one of the top-scoring systems that returned results for all
40,000 MQ2009 queries (measured over the small subset of the
queries that were evaluated). Specifically, this is the highest scor-
ing system that submitted results for all of the queries in MQ2009,
making it the best choice as the gold standard in our work.

To generate the bag-of-words candidate run, a BM25 implemen-
tation [24, 27, 28] using the same formulation and parameteri-
zation as described in Section 3 was ran for all 40,000 MQ2009
queries.> The stopwords list and Krovetz stemmer were derived
directly from the Indri® search engine. A total of 50,220,423 doc-
uments were indexed from the CWO09B collection, and all queries
were ran to a depth of 10,000.

The classifier was constructed as described in Section 3. For k,
the values used were 20, 50, 100, 200, 500, 1,000, 2,000, 5,000,
and 10,000. For each bucket, three different MED variants were
computed: MEDgrgp, MEDggrgr, and MEDpcg. Standard ten fold
cross-validation was used to generate the predictions. Note that
before generating the final folds, we removed all queries for which
we had any judgments (687 topics) for further validation purposes.

Dynamic Selection of k. Our first set of experiments were de-
signed to test the hypothesis that a best k value can be determined
on a query-by-query basis which minimizes effectiveness loss and
maximizes efficiency. In other words, finding the smallest accept-
able k for a target MED value can minimize the amount of work
later stage rerankers must do and also minimizes the cost of using a
safe-to-k candidate generation algorithm such as WAND. In order
to test this hypothesis, we created several different datasets to train
our predictor. We experimented with MEDgrgp using the cutoffs
0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, and 0.50. We also exper-
imented with MEDpcg using the cutoffs 0.2, 0.3, 0.5, 0.7, 1.00,
1.20, and 1.50. Experiments were also performed with MEDgrr
using the cutoffs 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, and 0.50, and
achieve similar results.

Figure 5 shows the tradeoff achievable between the candidate set
size k and MEDggp. The left pane is a summary of results when
using a target of MEDgrgp < 0.05, and the right pane summa-
rizes performance for MEDrgp < 0.10. In both graphs, the red
line represents the tradeoft horizon in efficiency and effectiveness
when using a fixed cutoff for all queries, as is generally done in
current system configurations. This is the baseline. The blue star

2http://github.com/jsc/WANDbI
3http://www.lemurproject.org/indri.php
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Method Predicted  Predicted Fixed Difference in Predicted  Predicted Fixed Difference in
MEDggp k k k k MEDgrgp MEDggp  MEDggp
Oracle 0.029 1,688 5,459 +223% 1,688 0.029 0.067 +128%
MultiLabel 0.106 1,053 653 - 38% 1,053 0.106 0.082 - 22%
MetaCost 0.068 2,277 1,644 - 28% 2,277 0.068 0.056 - 16%
LRCascade, t = 0.75 0.045 2,071 3,535 + 71% 2,071 0.045 0.058 + 30%
LRCascade, t = 0.80 0.036 2,656 4,432 + 67% 2,656 0.036 0.053 + 45%
LRCascade, t = 0.85 0.028 3,561 5,715 + 61% 3,561 0.028 0.044 + 59%
Table 4: Interpolated k and MEDgrgp when training at MEDggp < 0.05. The relative gain or loss for k£ and MEDggp is shown when
compared to using a fixed cutoff for all queries. The Oracle method represents the best possible result given a perfect classifier.
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Figure 6: MEDpcg versus k using a training threshold cutoff of MEDpce < 0.50 (left panel) and MEDpcg < 1.0 (right panel) for the
MQ2009 queries on ClueWeb09B. The blue star represents the best possible result with a perfect classifier, the green line is the result using
our LR Binary Cascade Model, and the red line represents the tradeoff horizon based on using a fixed & for all queries (the baseline).

represents the gold standard result that would be achievable with a
perfect classifier. The two squares represent results using standard
machine learning approaches: MultiLabel, a multilabel random for-
est classifier, and MetaCost [13], a cost-sensitive classifier.* When
compared to the fixed baseline, we see that traditional approaches
to classification do not provide any real benefit.

In contrast, the LRCascade approach (green line) shows clear
improvements over both multilabel and fixed cutoff baseline ap-
proaches. Note that each point on the green line represents a fixed
value of ¢ between 0.50 and 0.99 in increments of 0.01. So, a value
of 0.5 represents normal binary classification. As the value of ¢ in-
creases, greater confidence in the prediction is required before ex-
iting the cascade. We found that in practice values of ¢ = 0.75 up
to 0.85 produce the best tradeoff.

The lower the choice of MED, the less likely there is any loss
in effectiveness. Our experiments suggest that targeting low MED
values is most likely to reap the most rewards. That is, minimizing
the likelihood of any effectiveness loss provides further benefits
over a variable cutoff approach.

Table 4 shows the breakdown for using a fixed k and predicted
k interpolation when using a training set targeted at MEDggp <
0.05. Columns 2-5 show the relative gains in terms of k, and
columns 6-9 show the relative gains in terms of MEDgrgp. The
first row shows the gold standard Oracle result, which represents the
best result that is achievable using this parameter — metric — target
threshold combination. Changing any one of these three constraints
will change the gain (or loss) possible. Computing the Oracle result
is in itself interesting, as it provides a bound on how much benefit
the three constraint combination could provide.

“http://www.cs.waikato.ac.nz/ml/weka/

The interpretation of the data in columns 2-5 is as follows: given
a particular setting, how far below the interpolated fixed k curve
(red) are we? That is, if we accept a particular level of MEDRrgp
effectiveness, how much efficiency can we gain over simply just
adopting a fixed k cutoff for all queries (specifically, the k cutoff
that would achieve the same level of MEDgrgp)? The interpreta-
tion of the data in columns 6-9 is as follows: given a particular
setting, how far left of the interpolated fixed k& curve (red) are we?
That is, how much more effective (in terms of MEDRrgp) can we
make our results over simply setting a fixed k? In designing actual
search architectures, the first interpretation is more intuitive, since
we want to optimize efficiency without sacrificing effectiveness,
but the alternative perspective is interesting as well in quantifying
the benefits of our technique.

We see that both MultiLabel and MetaCost are marginally worse
than a fixed cutoff, with MetaCost being the slightly better choice.
The LRCascade method is the clear winner across a wide range of
t. The exact value of ¢ can be set depending on which direction
a user wishes to bias the tradeoff. Choosing a lower ¢ decreases
the average k while increasing the average MEDgrgp. Choosing a
higher ¢ biases the tradeoff in the effectiveness direction.

Figure 6 shows the same experiment when using MEDpcg <
0.50 and MEDpce < 1.00. Changing the underlying evaluation
metric does not change the general trends for all methods tested.
Multilabel classifiers do not outperform fixed cutoffs, while the LR-
Cascade is the superior tradeoff. We also ran a similar set of ex-
periments using MEDggrgr and obtained similar results and trends.

Figure 7 shows the percentage of queries which obtain a bound
of MEDgrgp < 0.10 or MEDpcg < 0.50. We can see that the
LRCascade approach is clearly predicting cutoffs that have a lower
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Figure 7: Average k versus the percentage of queries achieving a MED score less than a training target. The left panel shows the comparison
of the LRCascade (green line) and a fixed cutoff baseline (red line) for MEDgrgp < 0.10. The right panel shows the same comparison when

using MEDpcg < 0.50.

Interpolated MEDgrgr Interpolated k&

Method Predicted Predicted Fixed Difference in Predicted  Predicted Fixed Difference in

MEDggrr k k k k MEDgrr  MEDggrgr MEDggrr
Oracle 0.017 1,752 7,344 +319% 1,752 0.017 0.067 +292%
MultiLabel 0.117 1,159 452 - 61% 1,159 0.117 0.082 - 30%
MetaCost 0.060 3,222 2,214 - 31% 3,222 0.060 0.050 - 16%
LRCascade, t = 0.75 0.047 2,206 3,465 + 57% 2,206 0.047 0.060 + 26%
LRCascade, t = 0.80 0.035 3,013 4,705 + 56% 3,013 0.035 0.052 + 4%
LRCascade, t = 0.85 0.024 4,191 6,351 + 52% 4,191 0.024 0.040 + 70%

Table 5: Interpolated k and MEDgrr when training at MEDgrgr < 0.05. The relative gain or loss for £ and MEDggrgr is shown when
compared to using a fixed cutoff for all queries. The Oracle method represents the best possible result given a perfect classifier.

mean k and a higher percentage of queries under the target MED,
translating into higher effectiveness. We note that even the gold
standard does not achieve 100% under MEDggp. For a portion of
the topics, our first stage returns less than the target k£ documents
due to a lack of documents containing any of the query terms. Since
MEDggp, like RBP, is conceptually evaluated to infinite depth, this
deficiency is reflected by positive scores, some of which fall above
the target value. On the other hand, MEDpcg is evaluated to fixed
depth (depth 20 in this case) and the gold standard achieves 100%.

Finally, Table 5 shows the breakdown for several fixed k and
predicted k interpolations when building the training set to target
MEDgrr < 0.05. The trends remain consistent as when using
MEDgrgp or MEDpcg. The most interesting aspect of this table
is to note the subtle difference in potential improvements possible
for the gold standard Oracle result. Potential gains are +319% and
+292% respectively. This is a little better than the Oracle result
for MEDRrgp shown in Table 4, or that of MEDpcg < 0.50, which
shows potential gains of +259% for k and +147% for MED. Po-
tential gains are sensitive to both training cutoff and metric, which
should come as no surprise.

Note that further improvements could be realized by tuning a
number of different configuration options such as the number of
class cutoffs, using variable cutoff thresholds ¢ at different nodes
in the cascade, changing the classifier algorithm (perhaps even us-
ing different classifiers) at different nodes in the cascade, or even
developing an entirely new approach to cascaded regression / clas-
sification. Initial efforts towards variable cutoff thresholds show
promising results. The problem might also be cast as a regression
problem with a customized loss function. However, any of the gains
achievable are independent to all of the classification / regression

Method NDCG@10 ERR k

Oracle 0.356 0.434 2,386
LRCascade, t = 0.75 0.359 0.435 3,422
LRCascade, t = 0.80 0.359 0.435 4,062
LRCascade, t = 0.85 0.358 0.435 5,130
Fixed, k = 10,000 0.358 0.434 10,000

Table 6: Measured performance over 50 held out TREC 2009 Web
Track adhoc queries.

decisions. In fact, the precise gain can be computed based on the
creation of the Oracle run before investing any time and effort into
engineering a feature set and prediction scheme. We believe this
in itself is an important tool for solving a wide variety of query
effectiveness prediction problems in the future.

Validation. As a final step, we confirmed our past experience (as
illustrated by Figure 3) that low MEDggp values produce minimal
loss in measured effectiveness. For this purpose we employed the
50 queries of the TREC 2009 Web Track adhoc task, which were
held out from the training and test sets of other experiments re-
ported in this section. These 50 queries were pooled to depth 12 for
judging, and so should be suitable for computing early-precision
effectiveness measures, including NDCG@ 10 and ERR [19].

Table 6 shows the results. Over these queries, our cascade clas-
sifier produces no measurable loss in effectiveness when compared
to a fixed k of 10,000. In fact, the classifier achieves a tiny (but not
significant) gain in effectiveness in the third decimal place of some
measures, reflecting a change of one or two documents across this
small query set. On the other hand, there are substantial reductions
in average k, reflecting expected efficiency improvements.



S. CONCLUSION

In this work, we have presented a novel query-specific approach
to dynamically predict the best parameter cutoffs that maximize
both efficiency and effectiveness. To achieve this, we use Max-
imized Effectiveness Difference (MED) [11, 31] as the basis for
evaluating the quality of a candidate set relative to a more expensive
gold standard reranking step. By extending this methodology, we
are able to create large test corpora and train robust classifiers that
require no relevance judgments. Our approach to binary cascaded
classification is able to achieve up to a 50% improvement in aver-
age k. Our approach can be easily generalized to effectively tune
a wide variety of other parameters dynamically in multi-stage re-
trieval systems, and can be used to reliably estimate potential gains
achievable with any parameter — metric — target threshold com-
bination. In future work, we will look at creating more appropri-
ate rank-sensitive loss functions and explore how to use regression
techniques to further improve the generalizability of our approach.
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