
Monitoring the Top-m Rank Aggregation of Spatial
Objects in Streaming Queries

Farhana M. Choudhury Zhifeng Bao J. Shane Culpepper
RMIT University, Melbourne, Australia

Email: farhana.choudhury, zhifeng.bao, shane.culpepper@rmit.edu.au

Timos Sellis
Swinburne University of Technology

Hawthorn, Australia
Email: tsellis@swin.edu.au

Abstract—In this paper, we propose and study the problem of
top-m rank aggregation of spatial objects in streaming queries,
where, given a set of objects O, a stream of spatial queries
(kNN or range), the goal is to report the m objects with the
highest aggregate rank. The rank of an object with respect to
an individual query is computed based on its distance from
the query location, and the aggregate rank is computed from
all of the individual rank orderings. In order to solve this
problem, we show how to upper and lower bound the rank of an
object for any unseen query. Then we propose an approximation
solution to continuously monitor the top-m objects efficiently,
for which we design an Inverted Rank File (IRF) index to
guarantee the error bound of the solution. In particular, we
propose the notion of safe ranking to determine whether the
current result is still valid or not when new queries arrive, and
propose the notion of validation objects to limit the number of
objects to update in the top-m results. We also propose an exact
solution for applications where an approximate solution is not
sufficient. Last, we conduct extensive experiments to verify the
efficiency and effectiveness of our solutions. This is a fundamental
problem that draws inspiration from three different domains:
rank aggregation, continuous queries and spatial databases, and
the solution can be used to monitor the importance / popularity
of spatial objects, which in turn can provide new analytical tools
for spatial data.

I. INTRODUCTION

Rank aggregation is a classic problem in the database
community which has seen several important advances over
the years [1, 2, 3, 4, 5]. Informally, rank aggregation is the
problem of combining multiple rank orderings to produce a
single “best” ordering. Typically, this translates into finding
the top-m objects with the highest aggregate rank, where the
algorithms used for ranking and aggregation can take several
different forms. Common ranking and aggregation metrics
include majority ranking (sum, average, median, and quantile),
consensus-based ranking (Borda count), and pairwise disagree-
ment based ranking (Kemeny optimal aggregation) [1, 2]. Rank
aggregation has a wide variety of practical applications such
as determining election winners, sports analytics, collaborative
filtering, meta-search, and aggregation in database middleware.

One such application area where rank aggregation can be
applied is in spatial computing [6]. In spatial databases for
example, a fundamental problem is to rank objects based on
their proximity from a query location, where two pervasively
used spatial query types are k-nearest neighbor (kNN) query
and range query (which ranks the objects within the search
range by their distance from the query q [7]).

Spatial queries are an important tool that provides partially
ranked lists over a set of objects. Each object o receives a
different ranking (or is not ranked at all) which depends on the
query location. Thus, aggregating the ranks of spatial objects
can provide key insights into object importance in many
different scenarios. A recent example that inspires this work is
a real estate data visual analytics system called Houseseeker
1 we have built [8]. Houseseeker facilitates finding houses
based on spatial preference. The ranking of each house is
based on the distance from a preferred location (close to
a school, railway station, or supermarket). A house that is
ranked high by many users’ queries has a higher aggregate
rank, and is therefore more popular in the market. Clearly,
popularity in this context changes continuously over time as
new buyers search for houses. Continuously monitoring the
housing properties with the highest aggregate rank, regardless
of how rank is defined is of practical importance to both buyers
and sellers: (1) the buyers can continuously be informed of
the trending houses on the market, and make informed buying
decisions; (2) In Houseseeker, we intend to operationalize the
solutions developed in this paper by using user preferences to
continuously monitor the “hot” houses on the market, and to
find similar houses which are not currently for sale to provide
insights and notifications to potential sellers on the best time
to enter the market.

In this paper, we consider the problem of top-m rank
aggregation of spatial objects for streaming queries, where,
given a set of objects O, a stream of spatial queries (kNN
or range), the problem is to report the m objects with the
highest aggregate rank. Here, an object that satisfies the query
constraint is ranked based on its distance from the query
location, and the aggregation is computed using all of the
individual rank orderings. To maintain recency information and
minimize memory costs, a sliding window model is imposed
on the query stream, and a query is valid only while it remains
in the window. We consider two of the most common models
for sliding windows, the count-based window and the time-
based window [9].

Our work draws inspiration from three different domains
– spatial databases, continuous queries, and rank aggrega-
tion. While several seminal papers have considered various
combinations of these three domains, no previous work has
considered approaches to combining all three. We summarize
previous work, and the subtle distinctions between previous

1http://115.146.89.158

best solutions in these problem domains and our work in
Section II.

In the domain of rank aggregation, previous solutions have
addressed the problem of incrementally computing individually
ranked lists using on-demand algorithms [3, 4]. However, these
approaches do not consider streaming queries, and there is no
obvious way to easily extend these approaches to the sliding
window problem. A related body of work is to find the most
frequent objects over a stream, which is essentially a count
aggregation [10, 11]. However, our goal is to efficiently com-
pute the aggregation without explicitly requiring the ranked
results to be fully computed for every query separately, so
these approaches are not directly amenable to our problem.

In the domain of continuous spatial queries, objects are
streaming, but the queries do not change [9, 12, 13]. Contin-
uous result updates of top-k queries where the query location
is changing have also been extensively studied in the liter-
ature [14, 15]. These approaches make the assumption that
a query location can move only to an adjacent location, and
construct a safe region around the queries, such that the top-k
results do not change as long as the query location remains in
the safe region. These problems are subtly different from the
streaming query problem explored in this work, where each
new query location can be anywhere in space and the query
does not move.

In the domain of spatial databases, other related work on
finding the top objects with the maximum number of Reverse
k Nearest Neighbors (RkNN) exists [16, 17, 18]. Given a set
of objects O, the RkNN(o) is the set of objects containing o as
a kNN. Another variant of RkNN is bichromatic, where given
a set of objects O and a set of users U , the RkNN(o) is the
set of users regarding o as a kNN of O. Although the count of
RkNN is also an aggregation, these solutions do not consider
the rank position of the objects for the aggregation. Rather,
the approaches rely on properties of skyline and k-skyband
queries to estimate the number of RkNN for an object. Finding
the exact rank of an object in a skyline or a k-skyband is
not straightforward. Moreover, to the best of our knowledge,
there is no previous work on the continuous case of finding
the object with the maximum number of RkNN for streaming
queries (users).

Our contributions are summarized as below. (i) We propose
and formalize the problem of top-m rank aggregation on a
sliding window of spatial queries, which draws inspiration
from the three classical problem domains – rank aggregation,
continuous query and spatial databases. (Sec. III)
(ii) We propose an exact solution to continuously monitor the
top-m ranked objects. (Sec. III)
(iii) We propose an approximation algorithm with bounded
error guarantees to maximize the reuse of the computations
from previous queries in the current window, and show how
to incrementally update the top-m results only when necessary
(Sec. V). In particular, the following three technical contri-
butions have been made. (1) We propose the notion of safe
ranking to determine whether the result set in a previous
window is still valid or not in the current window. (2) We
propose the notion of validation objects which are able to limit
the number of objects to be updated in the result set. (3) We
show how to use an Inverted Rank File (IRF) index to bound
the error of the solution.

To summarize, aggregating spatial object rankings can
provide key insights into the importance of objects in many
different problem domains. Our proposed solutions are generic
and applicable to many different spatial rank aggregation
problems, and a variety of different query types such as range
queries, k-nearest neighbor (kNN) queries, and reverse kNN
(RkNN) queries can be adapted and used within our framework.

II. RELATED WORK

Since our work draws inspiration from three different
problem domains in database area – rank aggregation, spatial
queries and streaming queries, we review the related work for
each domain and combinations of two domains (if any).

A. Rank aggregation

Given a set of ranked lists, where objects are ranked in
multiple lists, the problem is to find the top-m objects with
the highest aggregate rank. This is a well studied and classic
problem, mostly for its importance in determining winners
based on the ranks from different voters [1, 2, 3, 4].

The approaches of Fagin et al. [1] and Dwork et al.
[2] assume that the ranked lists exist before aggregation.
When the complete ranked lists are not available a priori, or
random access in a ranked lists is expensive, Mamoulis et al.
[4] and a variant presented by Fagin et al. [3] have shown
that the ranked objects for an individually ranked list can
be computed incrementally one-by-one using an on-demand
aggregation. However, such incremental approaches [3, 4] are
not straightforward to extend to sliding windows where queries
are also removed from the result set as new queries arrive.

B. Database queries

The relevant work can be categorized mainly as - (i)
moving, (ii) streaming, and (iii) maximum top-k queries.
Moving queries. In spatial databases, given a moving query
and a set of static objects, the problem is to report the query
result continuously as the query location moves [14, 15, 19].
The most common assumption made to improve efficiency
is that a query location can move only to a neighboring
region [15, 19]. By maintaining a safe region around the query
location, a result set is updated only when the query moves out
of the safe region. Li et al. [14] substitute the safe region with
a set of safe guarding objects around the query location such
that as long as the current result objects are closer to query
than any safe guarding objects, the current result remains valid.

The problem of continuously updating kNN results when
both the query location and the object locations can move was
initially explored by Mouratidis et al. [20]. Mouratidis et al.
solve the problem by using a conceptual partitioning of the
space around each query, where the partitions are processed
iteratively to update results when the query or any of the
objects moves. In contrast, streaming queries studied in this
paper can originate anywhere in space and does not move,
thus the safe region based approaches are not applicable.
Query processing over streaming objects. Many different
streaming problems have been explored over the years, among
which the problem of continuous maintenance of query results
[12] is most closely related to our problem. Bohm et al.

[12] explore an expiration time based recency approach where
objects are only valid in a fixed time window. Other related
work explored sliding window models where objects are valid
only when they are contained in the sliding window [9, 13, 21].
The two most common variants of sliding windows are - (i)
count based windows which contain the |W | most recent data
objects; and (ii) time-based windows which contain the objects
whose time-stamps are within |W | most recent time units.

The general approach in all of these solutions is as follows
– Queries are registered to an object stream, and as a new
object arrives, the object is reported to the queries if it qualifies
as a result for that query. The solutions rely on the idea of a
skyline, where the set of objects that are not dominated by any
other object in any dimension must be considered. In these
models, the queries are static, and the skyline is computed
for a query. Newly arriving objects can be pruned based on
the properties of the skyline. The key difference between our
problem and related streaming problems is that objects are
static in our model while the queries are streaming.
Maximizing Reverse Top-k. Another related body of work
is reverse top-k querying [17, 22, 23]. Given a set of objects
and a set of users, the problem is to find the object that is
a top-k object of the maximum number of users. Li et al.
[17] explore solutions for spatial databases using precomputed
Voronoi diagrams. Other solutions use skyline and k-skyband
to estimate the number of users that have an object as a top-k
result. A k-skyband contains the objects that are dominated by
at most k−1 objects. Unlike top-k queries, the number of result
objects of a range query is not fixed, therefore maintaining a
skyband is not straightforward for range queries.

A related problem in spatial databases is to find a region in
space such that if an object is placed in that region, the object
will have the maximum number of reverse kNNs [24, 25, 26].
Solutions for this problem depend on static queries (users), and
are therefore not directly applicable to our problem. Moreover,
these solutions do not consider the rank position of the object
in the top-k results in their solutions.

Gkorgkas et al. [27] study the problem of maximizing
RkNN in temporal data, which returns the object with the
highest continuity score (the maximum number of consequent
intervals for which an object o is a top-m object based on its
RkNN count). Although the problem is scoped temporally, both
the queries and the objects in the database are static.

III. PRELIMINARIES

A. Problem Definition

Table I presents the basic notation used in the remainder of
the paper. Let O be a set of N objects where o ∈ O is a point
in d-dimensional Euclidean space, Xd . Now consider a stream
of user queries SQ which is an infinite sequence 〈q1,q2, . . .〉
in order of their arrival time. Each query q is a point in Xd ,
associated with a spatial constraint, Con(q), such as range or
kNN. In this work, we focus primarily on range queries, but our
solutions are easily generalized to other spatial query types.

We adopt the sliding window model where a query is only
valid while it belongs to the current sliding window W . We
present our work for a count-based sliding window, and then
discuss the extensions required for a time-based window in

TABLE I: Basic notation
Symbol Description

W Sliding window of |W | most recent queries.
d(o,q) Euclidean distance between object o and query q.
Con(q) Spatial constraint (range or kNN) of q.
r(o,q) Ranked position of o based on d(o,q).
O+

q The set of objects in O that satisfy Con(q).
ρ(o,W) Popularity (aggregated rank) of o for queries in W .
c A leaf level cell of a Quadtree.
d↓(o,cq) (d↑(o,cq)) The minimum (maximum) Euclidean distance between o

and any query in cq.
r ↓(o,cq) (r ↑(o,cq)) Lower (upper) bound rank of o for any query q in cell cq.
B Block size of the rank lists.
d↓(b,cq) (d↑(b,cq)) The minimum (maximum) distance between any object in

a block b and any query in cell cq.

Sec. V-F. A count-based window contains the |W | most recent
items, ordered by arrival time. Before defining our problem,
we first present a rank aggregation measure of an object for a
window of |W | queries, denoted as popularity.
Popularity measure. Each query q partitions O into two
sets, O+

q = {o ∈ O | o satisfies Con(q)} and O−q = {o ∈ O |
o does not satisfy Con(q)}. Each object o+ ∈ O+

q is ranked
based on the Euclidean distance from q, d(o,q). Other distance
measures can be used to rank the objects, but are not illustrated
in this work due to space limit. The rank of o w.r.t. q, r(o,q) =
i, is defined as the i·th position of o ∈ O+

q in an ordered list
indexed from i = 1 to |O+

q | where d(o+i ,q)≤ d(o
+
i+1,q).

The popularity of an object o ∈ O in a sliding window W
of queries is an aggregation of the ranks of o with respect
to the queries in W . We now formally define Popularity (ρ)
as a rank aggregation function for a sliding window of |W |
queries. Other similar aggregation functions are applicable to
our problem but beyond the scope of this paper.

ρ(o,W) =
1
|W |

|W |

∑
i=1

{
N−r(o,qi)+1 where o ∈ O+

qi
0 otherwise

A higher value of ρ(o,W) indicates higher popularity.
If an object does not satisfy the constraint of a query, the
contribution in the aggregation for that query is zero. We now
formally define our problem as follows:

Definition 1. Top-m popularity in a sliding window of
spatial queries (TmρQ) problem. Given a set of objects O, the
number of objects to monitor m, and a stream of spatial queries
SQ (q1,q2, . . .), maintain an aggregate result set R, such that
R⊆O, |R|= m, ∀o∈R, o′ ∈O\R, ρ(o,W)≥ ρ(o′,W), where
W contains the |W | most recent queries.

B. Baseline

A straightforward approach to continuously monitor the
top-m popular objects in W is: (i) Each time a new query, qn
arrives, compute the rank of all the objects in O+

qn that satisfy
Con(qn). (ii) Update ρ of the objects o ∈ O+

qn for qn, and the
objects o′ ∈ O+

qo for the query qo. Here, qo is the least recent
query that is removed from W as qn arrives. (iii) Sort all of the
objects that are contained in O+

q for at least one query q in the
current window, and return the top-m objects with the highest
ρ as R. As there is no prior work on aggregating spatial query
results in a sliding window (See Section II), we consider this
straightforward solution as a baseline approach.

Unfortunately, the baseline approach is computationally
expensive for several reasons: (i) For each query, the ranks of

1
2

3

4

5
6

7
8

1 2

3 4

6 7

8 9

5

10

18

14

22

Fig. 1: Computing rank bounds

c1 (o1,1), (o2,1) (o4,2), (o5,4) (o3,4), (o7,5)

minDist1,1:0 minDist1,2:6 minDist1,3:16

(o6,6), (o8,6)

minDist1,4:22

c2 (o1,1), (o2,1) (o3,3), (o4,3) (o5,3), (o7,5)

minDist2,1:1 minDist2,2:6 minDist2,3:10

(o6,6), (o8,6)

minDist2,4:18

c22 (o7,1), (o8,1) (o6,2), (o5,4) (o3,5), (o4,5)

minDist22,1:2 minDist22,2:8 minDist22,3:20

(o2,7), (o1,8)

minDist22,4:24

.

.

.

Fig. 2: An example inverted rank file

all objects that satisfy the Con(q) must be computed. As the
number of objects can be very large, and the queries can arrive
at a high rate, this step incurs a high computational overhead.
(ii) Each time the sliding window shifts, ρ for a large number
of objects may need to be updated. (iii) The union of all of
the objects that satisfy Con(q) for each query in the current
window must be sorted by the updated ρ.

To overcome these limitations, we seek techniques which
avoid processing objects for the query stream that cannot
affect the top-m objects in R. This minimizes the number
of popularity computations that must occur. Two possible
approaches to accomplish this, are: accurately estimate the
rank of the objects for newly arriving queries, or reuse the
computations from prior windows efficiently. We consider both
of these approaches in the following sections.

IV. RANK BOUNDS AND INDEXING

In this section, we first present how to compute an upper
bound and a lower bound for the rank of an object w.r.t. an
unseen query, and then propose an indexing approach referred
to as an Inverted Rank File (IRF) that can be used to estimate
the rank of objects for arriving queries.

A. Computing Rank Bounds

Here, we assume that the space has been partitioned into
cells (the space partitioning step is explained in Section V-A).
The rank bound for an object o w.r.t. a cell cq is computed
as follows. For any query q arriving with a location in cell
cq, the rank of o satisfies the condition, r ↓(o,cq)≤ r(o,q)≤
r ↑(o,cq), where r ↓(o,cq) and r ↑(o,cq) are the lower and the
upper bound rank of o for any query q in cell cq, respectively.
Lower bound rank. The lower bound rank is computed from
the number of objects o′ ∈ O\o that are definitely closer to
q in cq than o. Note that a smaller rank indicates a smaller
Euclidean distance from the query. Specifically, let `n be the
number of objects o′ ∈ O\o such that d↑(o′,cq) ≤ d↓(o,cq),
where d↑(o′,cq) (d↓(o,cq)) are the maximum (minimum)
Euclidean distance between o′ (o) and cell cq. Therefore, even

if the query location q is the closest point of cq to o, there are
still at least `n objects closer to q than o. So the rank of o must
be greater than `n for any query in cq, i.e., r ↓(o,cq) = `n +1.
Upper bound rank. Let, un be the number of objects o′ ∈
O\o such that, d↓(o′,cq) < d

↑(o,cq) for any query q in cq.
Therefore, even if a query q arrives at the farthest location in
cq from o, there are at most un objects that can possibly be
closer to q than o. So the rank of o cannot be greater than
un +1 for any query in cq, resulting in r ↑(o,cq) = un +1.

Example 1. In Figure 1, let O = {o1,o2, . . . ,o8} be the set of
objects and c1 be a cell in Xd . The minimum and maximum
distances between c1 and an object o4 are shown with a
blue and a red line, respectively. Here, only the maximum
distance between c1 and o1 is less than d↓(o4,c1). Therefore,
r ↓(o4,c1) = 1+1 = 2. The minimum distance between c1 and
each of the objects o1,o2 and o3 is less than d↑(o4,c1), so,
r ↑(o4,c1) = 3+1 = 4.

B. Indexing Rank

We present an indexing technique called an Inverted Rank
File (IRF) where Xd is partitioned into different cells, and the
bounds of each object’s rank for queries appearing in the cell
is precomputed. The rank information is indexed such that, if
a query q arrives anywhere inside a cell cq, the rank of any
object for q can be estimated. A quadtree structure is employed
to partition Xd into cells. We present the general structure of
an IRF, then in Section V-A we present a space partitioning
approach to approximately answer TmρQ with bounded error.
Inverted Rank File. An IRF consists of a collection of all
leaf level cells of the quadtree, and a set of rank lists, one
for each leaf level cell c of the quadtree. Each rank list is a
sorted sequence of tuples of the form 〈o,r ↓(o,cq)〉, one for
each object o ∈ O, sorted in ascending order of r ↓(o,cq). If
multiple objects have the same r ↓(o,cq) for a cell cq, those
tuples are sorted by d↓(o,cq). Here, r ↓(o,cq) is the lower
bound rank of o for a query q coming in cell cq. Each rank
list is stored as a sequence of blocks of a fixed length, B.
Each block b of the rank list for cell cq is associated with
the minimum distance between cq and any object in b, where
d↓(b,cq) = mino∈bd

↓(o,cq).

Let a quadtree partition the space into 22 disjoint leaf cells
in Figure 1 and the block size B = 2. Figure 2 shows the
resulting IRF index for the objects O = {o1,o2, . . . ,o8} derived
from Figure 1.

V. APPROXIMATE SOLUTION

As queries can arrive at a very high rate, there may be
instances where the cost of computing the exact solution is
too expensive. In this section, we show how to exploit the
rank bounds to find an approximate solution with a guaranteed
bound for the TmρQ problem. Table II summarizes the notation
used to present the approximate solution. At the highest level,
the approximate solution consists of the following steps:

1) A space partitioning technique is presented (in Sec. V-A) to
construct an IRF index that supports an incremental compu-
tation of the approximate solution of TmρQ (in Sec. V-B).

2) A safe rank is computed which represents a threshold, if
this threshold is exceeded by a result object currently in R,

TABLE II: Notation used in Sec. V
Symbol Description

qo The least recent query, which is excluded from W .
qn The most recent query, which is added to W .
r̂(o,q) (ρ̂(o,W)) Approximation of r(o,q) (ρ(o,W))
Ri The set of result objects for a window Wi.
om The m·th object from the set Ri−1.
r̂ ↓(b,q) (r̂ ↑(b,q)) Lower (upper) bound rank of any object in block b for q.
ρ̂(om+1,Wi−1) The approximate popularity of top (m+)·th object from

Ri−1 in previous window Wi−1.
ρ̂(om,Wi−1\qo) The approximate popularity of top m·th object from Ri−1,

updated w.r.t. excluding qo from Window Wi−1.
ρ̂(om,Wi) The approximate popularity of top m·th object from Ri.

that object must remain in R as a valid result. Specifically,
the current safe rank can be computed by combining: (i) a
block-level and (ii) an object-level safe rank (Sec. V-C)

3) If the ranks for all of the result objects are safe, R does not
need to be updated. Otherwise, more verification must be
done to determine if any object can affect R. This can be
achieved using a second technique called validation objects,
which incrementally identifies the objects that can affect R
(Sec. V-D). As long as the current result objects have a
higher popularity than the validation objects, R does not
need to be updated.

4) If R must be updated, the approximate popularity of the af-
fected objects are computed. We show that the computations
of the prior windows can be used to efficiently approximate
the popularity scores of the objects that must change in the
current window (Sec. V-D).
The approximation error bound is discussed in Sec. V-E.

A. Space partitioning

Ideally, rank bound estimations should be as close as
possible to the actual rank of each object. If the quadtree
leaf cell where a query q arrives is as small as a single point
location (the same as the location of q), then both the upper
and the lower bound ranks of any object will be exactly the
same as the actual rank of that object for q. However, if the
space is partitioned in this way, then the number of cells will
be infinite. Therefore, we propose a partitioning technique
which guarantees that the difference between the bound of
any object’s rank and its true rank is bounded by a threshold,
ε . Specifically, for any o ∈O, and any leaf level quadtree cell
c, the difference between the upper and the lower bound rank
must be within a percentage of the lower bound rank:

r ↑(o,c)−r ↓(o,c)≤ ε×r ↓(o,c) (1)
Otherwise, c is further partitioned until the condition holds.
As an example, let ε = 0.5. For an object o, and a cell ci, let
r ↓(o,ci) = 10 and r ↑(o,ci) = 20. So, ci needs to be further
partitioned for o until the condition is met. Let for another
cell c j, r ↓(o,c j) = 100 and r ↑(o,c j) = 120. Now cell c j does
not need to be partitioned for o since 120−100≤ 0.5×100.

The intuition behind this partitioning scheme becomes
quite clear when the notion of “top” ranked objects is taken
into consideration. Getting the exact position of the highest
ranked object matters much more than getting the exact posi-
tion of the object at the thousandth position. So, the granularity
of exactness in our inequality degrades gracefully with the true
rank of the object.
Partitioning process. The partitioning can be achieved iter-
atively, where the quadtree root is initialized with the entire
space Xd . The process starts from the root and recursively

partitions Xd . If the partitioning condition is not satisfied for an
object o and a cell c, partitioning of c continues until Condition
(1) is met. The process terminates when ∀o, the condition holds
for all of the current leaf level quadtree cells c.

Why use a quadtree? We use a quadtree to partition the space
and then organize the spatial information for each quadtree
cell. The rationale is as follows: (i) A quadtree partitions the
space into mutually-exclusive cells. In contrast, MBRs in an
R-tree may have overlaps, so a query location can overlap
with multiple partitions, making it difficult to estimate the
object ranks in new queries. (ii) A quadtree is update-friendly,
and the partition granularity can be dynamically changed
using ε to improve the accuracy of the approximation. This
allows performance to be quickly and easily tuned for different
collections. (iii) In a quadtree, a cell c is partitioned only when
any rank bounds for c do not satisfy Condition (1). In contrast,
if a regular grid structure of equal cell size is used, enforcing
partitioning using Condition (1) will result in unnecessary cells
being created.

B. Framework of approximate solution

In this section, we first introduce how to compute the
approximate popularity of an object for a given sliding window,
then we show how to aggregate the top-m approximate results.
Since this section is all about how to compute the approximate
popularity of objects, we use the terms popularity and approx-
imate popularity interchangeable, unless specified otherwise.

First, a lemma is presented to show that the rank of any
object o for a query q arriving in a cell c can be estimated using
only the lower bound rank, r ↓(o,c) within an error bound.

Lemma 1. For any object o ∈O, and any query q arriving in
cell c, r ↓(o,c)≤ r(o,q)≤ (1+ ε)×r ↓(o,c) always holds.

Proof: The rank bounds are computed such that r ↓(o,c)≤
r(o,q)≤ r ↑(o,c) always holds. For any object o ∈O, and for
any leaf level cell c of the quadtree, the space is partitioned
in a way that guarantees r ↑(o,c)−r ↓(o,c)≤ ε×r ↓(o,c), so,
clearly r ↓(o,c)≤ r(o,q)≤ (1+ ε)×r ↓(o,c) also holds.

Based on Lemma 1, we approximate the rank of an object
with an error bound as:

r̂(o,q) = (1+
ε

2
)×r ↓(o,c) (2)

Corollary 1. For any object o ∈O, and any query q arriving
in cell c, |r(o,q)− r̂(o,q)| ≤ ε/2×r ↓(o,c) always holds.

Proof: Here, the maximum difference between r ↓(o,c)
and r̂(o,q), and that between r ↑(o,c) and r̂(o,q), are both ε/2×
r ↓(o,c). Therefore, the proof follows from Lemma 1.

The approximate popularity ρ̂(o,W) of an object o for the
queries q in a W can be computed using rank approximation:

ρ̂(o,W) =
1
|W |

|W |

∑
i=1

{
N− r̂(o,qi)+1 where o ∈ O+

qi
0 otherwise (3)

Updating a count based sliding window Wi of queries from
the previous window Wi−1 can be formulated as replacing
the least recent query qo by the most recent query qn. As
a result, only the leaf level cells (in the quadtree) that contain
qn and qo need to be found, namely cqn and cqo. The rank lists
corresponding to these cells can be quickly retrieved from the

Algorithm 1: TmρQ
1.1 Input: Window Wi, number of result objects m, the result objects

Ri−1 of the previous window Wi−1, and the m+·th best popularity
ρ̂(om+1,Wi−1) of the previous window Wi−1.

1.2 Output: Result objects Ri of the current window Wi.
1.3 Initialize a max-priority queue PQ
1.4 Ri← /0; qn←Wi\Wi−1; qo←Wi−1\Wi
1.5 for o ∈ Ri−1 do
1.6 ρ̂(o,Wi−1\qo)← ρ̂(o,Wi−1)−ζ (r̂(o,qo))/|Wi|
1.7 ρ̂(om,Wi−1\qo)← the approximate popularity of top m·th object from

Ri−1 after updating for qo.
1.8 BSR← BLOCK_SAFE_RANK(ρ̂(om+1,Wi−1),ρ̂(om,Wi−1\qo),PQ)
1.9 for o ∈ Ri−1 do

1.10 ρ̂(o,Wi)← ρ̂(o,Wi−1\qo)+ζ (r̂(o,qn))/|W |
1.11 if r̂(o,qn)≤ BSR AND o ∈ O+

qn then
1.12 Ri← o
1.13 if |Ri|< m then
1.14 ρ̂(om,Wi)← current m·th best popularity of Ri−1 in Wi.
1.15 OSR← OBJECT_SAFE_RANK(ρ̂(om+1,Wi−1), ρ̂(om,Wi),PQ)
1.16 for o ∈ Ri−1\Ri do
1.17 if r̂(o,qn)≤ OSR AND o ∈ O+

qn then
1.18 Ri← o
1.19 if |Ri|< m then
1.20 VO ← VALIDATION_OBJECTS(ρ̂(om,Wi), PQ)
1.21 if VO 6= /0 then
1.22 Ri ← UPDATE_RESULTS(VO,Ri−1\Ri)
1.23 RETURN Ri

IRF index. For each window Wi, assume that m+ 1 objects
with the highest ρ̂ are computed, where the top-m objects are
returned as the result Ri of TmρQ for Wi, and the popularity
of the (m+)·th object is used in the next window to identify
the safe rank and the validation objects efficiently.

The steps for updating the approximate solution of TmρQ
for a window Wi are shown in Algorithm 1. Note that the
necessary notation is defined in Table II. Here, ζ (o,q) is the
contribution of q to the popularity of o, and is computed as:

ζ (r̂(o,q)) =
{

N− r̂(o,q)+1 where o ∈ O+
q

0 otherwise
First, the approximate popularity of the result objects o ∈

Ri−1 for the excluded query qo, r̂(o,qo) is updated. Let the
updated m·th highest popularity from Ri−1 be ρ̂(om,Wi−1\qo)
(Lines 1.5 - 1.7 in Algorithm 1). The rest of the algorithm
consists of three main components - (i) computing the safe
rank in two steps (block-level and object-level safe rank), (ii)
finding the set of validation objects, and (iii) updating Ri.
Locating an object in IRF. Since some of the steps in
Algorithm 1 require finding the entry of a particular object
in a rank list of IRF, we first present an efficient technique for
locating objects, and then describe the remaining steps of the
algorithm. We start with a lemma that find a relation between
the minimum Euclidean distance of the objects from a cell c
and the lower bound ranks of the objects for any query in c.

Lemma 2. For any two objects oi,o j ∈ O and a cell c, if
r ↓(oi,c)≤ r ↓(o j,c), then d↓(oi,c)≤ d↓(o j,c) always holds.

Proof: See extended ArXiV version [28] for proof.

Lemma 2 show that sorting the objects by r ↓(o,c) is
equivalent to sorting the objects by their minimum Euclidean
distance to c, d↓(o,c). If multiple objects have the same
r ↓(o,c), they are already stored as sorted by d↓(o,c) as
described in Sec. IV-B. Therefore, we can locate the position
of o in the rank list of cell c as: (1) Compute the minimum

Euclidean distance d↓(o,c) of c from o. (2) As described in
Sec. IV-B, each block b of the rank list for cell c is associated
with the minimum distance between cq and any object in b,
d↓(b,c), so a binary search on d↓(b,c) can be performed to
find the position of the block b where o is stored. (3) Perform
a linear scan in that block to find the entry for o.

The entire process has a O(log2(N/B)+B) time complex-
ity, where B is the number of objects in a block.

C. Safe rank

Recall that in Algorithm 1 the purpose of finding a safe
rank is to minimize the number of updates in Ri−1 (result
objects in the previous window Wi−1) to get the result set Ri
(in the current window Wi) whenever the sliding window shifts.
In particular, the idea is to compute the safe rank OSR for the
objects o ∈ Ri−1 such that, if r̂(o,qn) < OSR, then no other
object from o′ ∈O\Ri−1 can have a higher ρ̂ than o, thereby o
is a valid result in Ri as well. Note that a smaller value of rank
implies a higher contribution to the popularity measure. The
safe rank is defined w.r.t. the current window Wi by default.

Before presenting the computation of an object’s safe rank,
the concept of popularity gain of an object o is introduced,
which results from replacing the least recent query qo by the
most recent query qn, and is denoted by ∆o:

∆o = ρ̂(o,Wi)− ρ̂(o,Wi−1) =
ζ (r̂(o,qn))−ζ (r̂(o,qo))

|Wi|
(4)

Here, if o does not satisfy the query constraint Con(q),
the contribution of q to the popularity of o, ζ (r̂(o,qn)) =
0. Let ∆

↑
o denote the maximum popularity gain among all

objects (in the current window Wi). Then the popularity of
any object o′ ∈ O\Ri−1 can be at most ρ̂(om+1,Wi−1)+∆

↑
o ,

where ρ̂(om+1,Wi−1) is the (m+)·th highest approximate
popularity in the previous window Wi−1. In other words, if the
updated popularity of an object o∈Ri−1 is higher (better) than
ρ̂(om+1,Wi−1)+∆

↑
o , then such an o is guaranteed to remain in

Ri, which inspires the design of object-level safe rank OSR as:

ρ̂(om,Wi−1\qo)+
N−OSR+1
|Wi|

≥ ρ̂(om+1,Wi−1)+∆
↑
o (5)

Since a lower rank indicates a higher contribution to the
popularity, the gain will be maximized when the difference
between ζ (r̂(o,qn)) and ζ (r̂(o,qo)) is maximized. Therefore,
the goal of minimizing the updates of Ri−1 can be reduced to
the challenge of how to compute a tight estimation of ∆

↑
o .

1) Block-level popularity gain: Since the objects are ar-
ranged blockwise in an IRF index, and each object o is sorted
by the lower bound rank r ↓(o,cq) in ascending order, a block-
level gain can also be used as the first step in finding a tighter
estimation of the maximum gain. A block-level maximum gain
∆
↑
b is computed such that ∆

↑
b ≥ ∆

↑
o , which can be used to find

the block-level safe rank, BSR. If the rank of any result object
is not better than BSR for qn, then an object-level maximum
gain, ∆

↑
o is computed. The object-level safe rank OSR can be

computed using this value, where OSR≥BSR, as a lower value
of rank implies a higher gain. If the rank of any result object is
still not safe, then the validation objects (proposed in Sec. V-D)
must be checked to decide if Ri−1 needs to be updated. Here,

a part of the safe rank calculations can be reused to find the
validation objects, which will be explained in Section V-D.
Block-level gain computation. Given a block b from the
rank list of qn, the block-level gain ∆b is an overestimation
of the gain of the objects o ∈ b, such that ∆b ≥ ∆o. As the
gain is maximized when the difference between ζ (r̂(o,qn))
and ζ (r̂(o,qo)) is maximized, a technique to compute ∆b can
be actualized by finding: (i) a lower bound estimation of the
rank of any object o ∈ b for qn, namely r̂ ↓(b,qn), where,
r̂ ↓(b,qn) ≤ r̂(o,qn); and (ii) an upper bound estimation of
the rank that any object o ∈ b can have for qo, denoted as
r̂ ↑(b,qo), such that r̂(o,qo)≤ r̂ ↑(b,qo).

Since the objects are sorted in ascending order of lower
bound ranks in the IRF index, the lower bound rank of the
first entry of b is implicitly r̂ ↓(b,qn). Here, ∀o∈ b, r̂ ↓(b,qn)≤
r ↓(o,qn) holds by definition.

Next, for the same block b of the rank list of qn, finding
the maximum rank r̂ ↑(b,qo) that any object o∈ b can have for
qo is needed. To achieve this, a block b′ is found such that all
of the objects o ∈ b are guaranteed to be in the rank list of qo
before b′. As the objects are sorted by r ↓(o,cqo) in the rank
list of cqo, r ↓(o′,cqo) is guaranteed to be greater than that of
any object in b′, where o′ is the first entry of b′. Therefore,
r ↓(o′,qo) is taken as the upper bound estimation, r̂ ↑(b,qo).

For a tight estimation of r̂ ↑(b,qo), the block b′ with the
smallest r ↓(o′,qo) must be found. As the objects and blocks of
a rank list are sorted by the minimum Euclidean distance from
the corresponding cell (Section IV-B), and ∀o∈ b, d↓(o,cqo)≤
d↑(b,cqo), a binary search over the blocks of the rank list of
qo is performed to find the first position of the block b′ where
d↑(b,cqo) ≤ d↓(b′,cqo). Here, d↑(b,cqo) is computed as the
maximum Euclidean distance between the minimum bounding
rectangle of the objects o ∈ b and cell cqo.

Example 2. In Figure 2, let c1 and c2 be the cell where qn and
qo arrive respectively. Let the constraint of both queries are
satisfied by all of the objects; let b = 〈(o4,2),(o5,4)〉 be the
block of the rank list of c1 currently under consideration. Here,
r̂ ↓(b,qn) = 2, which is the lower bound of the first entry of b.
Let d↑(b,c2) = 14, computed from the MBR of block b and cell
c2. Now, a binary search is performed with the value 14 over
the d↓ of the blocks in c2. Here, we get b′ = 〈(o6,6),(o8,6)〉,
as d↓(b′,c2) = 18, which is the smallest value of d↓ greater
than 14, shown with an arrow. So, r̂ ↑(b,qo) = 6 is the lower
bound rank of the first entry of b′.

2) Block-level safe rank: By making use of the values
r̂ ↓(b,qn) and r̂ ↑(b,qo) of block b, a block-level estimation
of the maximum gain for Wi can found, and a block-level
safe rank BSR can be computed, as shown in Algorithm 2.
Algorithm 2 shows the steps to compute the block-level safe
rank by finding the maximum gain of a block using the rank
lists of qn and qo. A max-priority queue PQ is used to keep
track of blocks that must be visited, where the key is ∆b. Here,
∆b is an overestimation of the gain of the objects in b. For any
object o ∈ b, ∆o ≤ ∆b, is computed in Line 2.10 as -

∆b←
1
|Wi|

ζ (r̂ ↓(b,qn))−ζ (r̂ ↑(b,qo))

Recall that in the IRF index, each object o in the rank list
is sorted in ascending order of the lower bound rank w.r.t.

Algorithm 2: BLOCK_SAFE_RANK

2.1 Input: ρ̂(om+1,Wi−1) - (m+)·th highest popularity of Wi−1,
ρ̂(om,Wi−1\qo) - m·th highest popularity from Ri−1 after updating for
qo, and PQ - a max-priority queue.

2.2 Output: Block based safe rank - BSR
2.3 b← first block in the rank list of cqn.
2.4 ∆

↑
b ← 0

2.5 do
2.6 r̂ ↓(b,qn)← r ↓(o,cqn) of the first entry o from b.
2.7 d↑(b,cqo)← Maximum Euclidean distance between b, cqo.
2.8 b′← First block position of cqo, where d↑(b,cqo)≤ d↓(b′,cqo).
2.9 r̂ ↑(b,qo)← r ↓(o′,cqo) of the first entry o′ of b′.

2.10 ∆b←
ζ (r̂ ↓(b,qn))−ζ (r̂ ↑(b,qo))

|W |
2.11 ENQUEUE (PQ,b,∆b)

2.12 ∆
↑
b ← ∆top(PQ)

2.13 b← NEXT (cqn)
2.14 while b cannot have a better gain than ∆

↑
b ;

2.15 BSR ← Compute from ρ̂(om+1,Wi−1),ρ̂(om,Wi−1\qo), ∆
↑
b as Eqn. 6.

2.16 RETURN BSR

Algorithm 3: OBJECT_SAFE_RANK

3.1 Input: ρ̂(om+1,Wi−1) - (m+)·th highest popularity of Wi−1,
ρ̂(om,Wi−1\qo) - updated m·th highest popularity from Ri−1 after
removing qo, PQ - a max-priority queue from BLOCK_SAFE_RANK.

3.2 Output: Object-level safe rank, OSR
3.3 while PQ not empty do
3.4 E← DEQUEUE (PQ)
3.5 if E is object then
3.6 ∆

↑
o ← ∆E ; BREAK

3.7 else
3.8 for o in E do

3.9 ∆o←
ζ (r̂(o,qn))−ζ (r̂(o,qo))

|W |
3.10 ENQUEUE (PQ,o,∆o)
3.11 OSR ← Compute from ρ̂(om,Wi),ρ̂(om,Wi−1\qo),∆↑o (by Eqn. 5).
3.12 RETURN OSR

the cell cqn, and the traversal starts from the beginning of the
rank list of cqn so that the objects with a higher gain are most
likely to be explored first. The traversal continues until the
subsequent blocks of the rank lists of qn cannot have a better
gain than the current maximum gain ∆

↑
b found so far. Here,

the terminating condition of Line 2.14 is:

ζ (r̂ ↓(b,qn))/|Wi|< ∆
↑
b

Lastly, in Line 2.15 the maximum gain value ∆
↑
b is used

to compute the block-level safe rank as follows:

ρ̂(om,Wi−1\qo)+
N−BSR+1
|Wi|

≥ ρ̂(om+1,Wi−1)+∆
↑
b (6)

3) Object-level safe rank: If the rank of any object o∈Ri−1
for qn is not smaller (better) than the block-level safe rank BSR,
then the object-level safe rank is computed, where OSR≥ BSR
is used to further determine whether the result needs to updated
or not (Lines 1.13 - 1.18 in Algorithm 1).

Algorithm 3 shows a best-first approach to compute the
maximum object level gain ∆

↑
o , using the same priority queue

PQ maintained in the block-level computation. In each itera-
tion, the top element E of PQ is dequeued. If E is a block, the
approximate rank of each o ∈ E for qn and qo is computed
using the lower bound rank in the corresponding rank lists.
The objects are then enqueued in PQ according to the gain

computed using Eqn. 4. If E is an object, then the gain is
returned as ∆

↑
o (Lines 3.5 - 3.6). The object-level safe rank,

OSR, is then computed in the same manner as Eqn. 6 with ∆
↑
o .

D. Validation objects

If the rank of any object o ∈ Ri−1 is not safe, a set of
validation objects VO is found such that, as long as ∀vo ∈ VO,
ρ̂(o,Wi) ≥ ρ̂(vo,Wi), o is a valid result object of Ri. We
present an efficient approach to incrementally identify VO.
Furthermore, we show that if the result needs to be updated,
the new result objects also must come from VO.

First, after a new query qn arrives, the approximate rank
for each object o ∈ Ri−1 is computed, and the appropriate
popularity scores are updated. Let the updated m·th highest
approximate popularity from Ri−1 be ρ̂(om,Wi) (Line 1.14 of
Algorithm 1). The priority queue PQ maintained for safe rank
computation is used to find the set VO of validation objects,
where ρ̂(om,Wi) is used as a threshold to terminate the search.

A best-first search is performed using PQ to find the
objects that have gain high enough to be a result. Specifically,
if the dequeued element E from PQ is a block, the r̂ of
each object o in E is computed for qn and qo in the same
manner as described for the object-level safe rank computation.
As the popularity of an object o ∈ O\Ri−1 can be at most
ρ̂(om+1,Wi−1)+∆o, an object o is included in the validation
set if o satisfies the following condition:

ρ̂(om+1,Wi−1)+∆o ≥ ρ̂(om,Wi) (7)

As PQ is a max-priority queue which is maintained for the
gain of the objects and the blocks, the process can be safely
terminated when the gain of a dequeued element E does not
satisfy the condition in Equation 7. If no validation object is
found, that means there is no object that can have a higher
popularity than the current results, so the result set Ri−1 (of
previous window Wi−1) is the result of current window Wi.
Otherwise, the popularity of each object in Ri−1\Ri needs to
be checked against the popularity of the validation objects vo∈
VO to update the result.

1) Updating results: As described in Section V-D, the set
of validation objects VO is computed such that no object o\VO
can have a higher popularity than any of the objects in Ri−1.
Therefore, only objects in VO are considered when updating
the result set. To update the results using the objects vo ∈ VO,
the popularity of vo for the current window must be computed.
Therefore, an efficient technique to compute the popularity of
the validation objects is now presented.
Computing ρ̂ of the validation objects. As the popularity
gain of each vo ∈ VO has already been computed as described
in Section V-D, it is sufficient to find the ρ̂(vo,Wi−1\qo) and
use it to compute ρ̂(vo,Wi). Since the popularity of every
object for every window is not computed, a straightforward
way to compute ρ̂(vo,Wi−1\qo) is to find the rank of vo for
each q∈Wi−1\qo using the corresponding rank lists. However,
this approach is computationally expensive, especially when
the window size is large. Moreover, if vo was a validation
object or a result object in a prior window Wi−y, then the
same computations are repeated unnecessarily for the queries
shared by the windows (the queries contained in Wi∩Wi−y).

Therefore, if ρ̂ of a result or a validation object is computed
for a window Wi−y, the aim is to reuse this computation for
later windows in an efficient way. This can be accomplished
by storing the popularity of a subset of “necessary” objects
from prior windows for later reuse. We show that the choice
of these limited number of windows is optimal, and storing
the popularity for any additional windows cannot reduce the
computational cost any further.
Choosing the limited number of prior windows. The
popularity computations can be reused if the number of shared
queries among the windows is greater than the number of
queries that differ. Otherwise, the popularity must be computed
for the window Wi from scratch rather than reusing the popular-
ity computations from Wi−y. Specifically, let Y be the number
of shared queries among windows Wi, Wi−y (Y = |Wi∩Wi−y|),
Qo =Wi−y\Wi, and Qn =Wi\Wi−y. So in a count based window,
|Qn|= |Wi|−Y and |Qo|= |Wi|−Y , as each time a new query
is inserted, the least recent query is removed from the window.
If the number of computations required for the shared queries
is greater than the number of computations for |Qn|+ |Qo|,
i.e., Y ≥ 2(|Wi|−Y), then computations can be reused. So the
number of shared queries, Y , should be greater than or equal
to 2|Wi|/3 for efficient reuse.
Reusing popularity computations. If the condition Y ≥
2|Wi|/3 holds, the popularity of an object o computed for Wi−y
can be used to compute ρ̂(o,Wi) as follows:

ρ̂(o,Wi) = ρ̂(o,Wi−y)+

∑qn∈Qn ζ (r̂(o,qn))−∑qo∈Qo ζ (r̂(o,qo))
|Wi|

(8)

Popularity lookup table. A popularity lookup table is
maintained with the popularity of the result and validation
objects for the most recent 2|Wi|/3 windows. If a validation
object vo of the current window Wi is found in the lookup table,
the popularity is computed using Equation 8. Otherwise, the
popularity of vo is computed from the rank lists of the queries
in Wi. The popularity vo for Wi is then added to the popularity
lookup table for later windows.
Obtaining Results. The objects vo ∈ VO are considered one
by one to update the results. After computing the popularity
of an object vo ∈ VO, if ρ̂(vo,Wi) > ρ̂(om,Wi), then vo is
added to Ri. The set Ri is adjusted such that it contains
m objects with the highest ρ̂, and the value of ρ̂(om,Wi) is
adjusted accordingly. During this process, if the overestimated
popularity of an object vo computed with Eqn 7 is less than
the updated ρ̂(om,Wi), that object can be safely discarded from
consideration without computing its popularity.

E. Approximation error bound

Here, we formalize the approximation error bound of our
proposed approach. For any object o ∈O, and any window W
of queries, the ratio between ρ̂(o,W) and ρ(o,W) is bounded.

Lemma 3. For any object o∈O, and a window W of queries,
the approximation ratio is bounded by 1− ε/2N.
(i) ρ̂(o,W)/ρ(o,W)≤ 1−ε/2N when ρ(o,W)≥ ρ̂(o,W); and
(ii) ρ(o,W)/ρ̂(o,W) ≤ 1− ε/2N when ρ̂(o,W) ≥ ρ(o,W)
always holds.

Proof: See extended ArXiV version [28] for proof.

F. Extending the solution for time based window

Given a fixed time interval, a time-based sliding window
W contains all of the queries that have arrived within the
most recent interval. In contrast to a count based window, the
number of new queries included, and the number of queries
excluded from a time based window can vary at each interval.
Let the set of new queries included be Q′n and the set of queries
excluded be Q′o for a time based window. Then, the following
modifications of the solution presented in Sec. V can be made
to support this window type:

1) Similar to a count based window, if the aggregated rank esti-
mation of a result object o is high enough after a shift of the
sliding window such that no other object can have a higher
popularity, o must remain as a result object. Therefore, the
popularity gain and the safe rank needs to be computed for
the sets Q′n and Q′o for the queries each time the sliding win-
dow shifts. For example, the object level gain is computed
as: ∆o =

1
|Wi|ζ (∑qn∈Q′n r̂(o,qn))−ζ (∑qo∈Q′o r̂(o,qo))

2) If the current result objects are not safe, we need to find
the validation objects. Similar to a count based window, a
best-first search can be performed to find the objects that
can have a higher popularity than the current results, where
the gain values are computed for the sets Q′n and Q′o.

Note that, although the solution can be extended for a time
based window, the same approximation bound is not applicable
as the window size varies at each interval. We leave this and
other window-based variations of our solution to future work.

VI. EXPERIMENTAL EVALUATION

Here, we present the experimental evaluation for our solu-
tions to monitor the top-m popular objects in a sliding window
of streaming queries. As there is no prior work that directly
answers this problem (Sec. II), we compare our approximate
solution (proposed in Sec. V), denoted by AP, with the baseline
exact approach (proposed in Sec. III-B), denoted by BS.

A. Experiment Settings

All algorithms were implemented in C++. Experiments
were ran on a 24 core Intel Xeon E5− 2630 2.3 GHz using
256 GB RAM, and 1TB 6G SAS 7.2K rpm SFF (2.5-inch) SC
Midline disk drives. All index structures are memory resident.
Datasets and query generation. All experiments were con-
ducted using two real datasets, (i) Melb dataset at a city scale
and (ii) Foursq2 dataset at a country scale.

The Melb dataset contains 52,913 real estate properties sold
in Melbourne in 2013-2015, collected from the real estate
advertising site3. The locations of the queries were created
by using locations of 987 facilities (train stations, schools,
hospitals, supermarkets, and shopping centers) in this city. We
generated two sets of queries from these locations, each of
size 20K. Repeating queries were created using two different
approaches: (i) uniform (U); and (ii) skewed (S) distribution,
respectively. The radius of the queries are varied as an exper-
imental parameter, and is discussed further in Sec. VI-B.

2https://sites.google.com/site/yangdingqi/home/foursquare-dataset
3http://www.realestate.com.au

(a) Melb

Queries
Objects

(b) Foursq
Fig. 3: Dataset and query locations

The Foursq dataset contains 304,133 points of interest
(POI) from Foursquare4 in 34 cities spread across USA. From
the check-ins of each user, we generated a query whose
location was the centroid of all check-ins of that user, and
the query radius was set to the minimum distance that covers
these check-ins. If a user had only one check-in, we set the
query location as the check-in location, and the radius of the
query is randomly assigned from another user. As a result, a
total of 22,442 queries were generated for the Foursq dataset.

Since the Melb dataset represents real city-level data, and
queries are real facilities in that city, it is the best candidate
for an effectiveness study. So we performed efficiency and
effectiveness studies using Melb. Since the queries generated
for Foursq are spread over a much wider area, it is more
suitable for the efficiency and scalability study. Nevertheless,
we also used Foursq to validate our effectiveness study.

After initializing the sliding window, we evaluated the
performance of both BS and AP for 10K query arrivals in the
stream, using 10K shifts of the sliding window. We repeated
the process 50 times and reported the mean performance. For
the Melb dataset, the arrival order of queries was randomly
generated, and for the Foursq dataset, the order was obtained
from the most recent check-in time of the corresponding user.
Figure 3 shows the location distribution of the objects and the
queries for both datasets, where the blue (red) points represent
object (query) locations. Note that, for the Foursq dataset, the
POIs are clustered in large cities (blue clusters). As a user may
check-in at different cities, the queries (which are the centroid
of the check-in locations) are distributed in different locations
across USA. The index construction time for different values
of ε are shown in Table III.

TABLE III: Index construction time (min)
ε Melb Foursq

1 184 1201
2 176 1096
3 130 971
4 67 511
5 65 487

TABLE IV: Parameters
Parameter Range

W 100,200,400,800,1600
m 1,5,10,20,50,100
Query radius (%) 1,2,4,8,16
ε 1,2,3,4,5
B 32,64,128,256,512

Evaluation & Parameterization. We studied the efficiency,
scalability and effectiveness for both the baseline approach
(BS), and the approximate approach (AP) by varying several

4https://foursquare.com

1

10

100

1K

10K

100K

100 200 400 800 1600

O
P
Q

|W|

BS(U)
BS(S)
AP(U)
AP(S)

(a) Objects computed

 0

 20

 40

 60

 80

100 200 400 800 1600

R
P
Q

(
m
s
)

|W|

BS(U)
BS(S)
AP(U)
AP(S)

(b) Runtime
Fig. 4: Effect of varying |W | on Melb dataset

parameters. The parameters and their ranges are listed in
Table IV, where the values in bold represent the default values.
For all experiments, a single parameter varied while keeping
the rest as the default settings. For efficiency and scalability,
we studied the impact of each parameter on: the number of
objects whose popularity are computed per query (OPQ), to
update the answer of TmρQ; and the runtime per query (RPQ).

In order to measure the effectiveness of our approximate
approach, the impact of each parameter on the following two
metrics were studied:

1) Approximation ratio: For a window W , for each oi ∈ R,
o′i ∈ R̂, where i is the corresponding position of the object
in top-m results, we compute the approximation ratio as:
ratio = max(ρ̂(o′i,W)/ρ(oi,W),ρ(oi,W)/ρ̂(o′i,W)). We re-
port the average approximation ratio of the sliding window
by varying different parameters. As the popularity of an
object is an aggregation over the estimated ranks, the
approximation ratio may not be “1” (the best approximation
ratio) even if the approximate result list R̂ is exactly the
same as that result list returned by the baseline. Therefore,
we present the following metric to demonstrate the similarity
of the approximate result object lists with the baseline.

2) Percentage of result overlap: For a window W , let |R|=
|O|, where R is the sorted list of all of the objects according
to their exact popularity. We report the similarity between
the result list returned by the approximate approach, R̂ with
R at different depths. Specifically, for each result object o′i ∈
R̂, where |R̂|= m, we record the percentage of objects in R̂,
overlapping with the top-k objects of R, where k is varied
from 10 to 200. For instance, when m= 50, we compute how
many objects in the top-50 approximate result also appear
in the top-50, top-75, . . . , top-150 exact results. We report
the percentage of the shared objects for different choices of
k, averaged by 10,000 shifts of the sliding window.

B. Efficiency & Scalability Evaluation
Varying |W |. Figure 4 and Figure 5 show the impact of
varying the number of queries in the sliding window, |W |,
for Melb and Foursq, respectively. For Melb, the experiments
were conducted using uniform and skewed query sets, while
the Foursq query set is derived directly from user check-ins.

For both datasets, the number of popularity computations
required by the approximate approach AP is about 3 orders
of magnitude less than the baseline BS. The reason is two-
fold: (i) In AP, we compute the popularity of only the objects
necessary to update the result. If the previous result objects are

1

10

100

1K

10K

100K

100 200 400 800 1600

O
P
Q

|W|

BS
AP

(a) Objects computed

 0

 20

 40

 60

 80

 100

100 200 400 800 1600

R
P
Q

(
m
s
)

|W|

BS
AP

(b) Runtime
Fig. 5: Effect of varying |W | on Foursq dataset

1

10

100

1K

10K

100K

1 2 4 8 16

O
P
Q

Query radius (%)

BS(U)
BS(S)
AP(U)
AP(S)

(a) Objects computed

 0

 20

 40

 60

 80

1 2 4 8 16

R
P
Q

(
m
s
)

Query radius (%)

BS(U)
BS(S)
AP(U)
AP(S)

(b) Runtime
Fig. 6: Effect of varying query radius on Melb dataset

found as valid, we do not need to compute the popularity of
any additional object. In contrast, the baseline BS must update
the popularity for all objects that satisfy the query constraint.
(ii) Since the popularity function is an average aggregation (see
Sec. III), the popularity of an object usually does not change
drastically as |W | increases. So, the result objects in a window
are more likely to stay valid in subsequent windows for larger
values of |W |, thereby requiring even fewer objects being
checked. As shown in Figures 4b and 5b, fewer popularity
computation leads to lower running time.

In Melb, the performance of AP in both uniform and skewed
query sets improves as |W | increases, but drops slightly from
|W |= 800 to 1600. This is because, if the results are not valid
for a window, we need to check the validation objects, which is
a subset of the objects that satisfy the constraint of at least one
query in the current window. So although the results update
less often for a larger |W |, an update in the results may require
checking more objects for a larger |W |.
Varying query range. Figure 6 shows the performance
when varying the radius of each query as a percentage of the
dataspace. We vary the query radius only for Melb, as we use
the radius that covers the check-in locations of a user as the
query radius for Foursq. Here, the number of objects that fall in
the query range grows as query radius increases. Therefore, the
performance of the baseline declines rapidly when the radius
increases. In contrast, the approximate approach computes the
popularity of only the objects that can be a result, which is
a subset of the objects that fall within the query range. Thus,
the approximate approach outperforms the baseline, and the
benefit is more significant as the query radius increases.
Varying m. The experimental results when varying the number
of result objects, m, are shown in Figure 7 and Figure 8 for
Melb and Foursq, respectively. Here, the performance of the
baseline does not vary much, as it computes the popularity
for all of the objects that fall in the query range regardless

1

10

100

1K

10K

100K

1 5 10 20 50 100

O
P
Q

m

BS(U)
BS(S)
AP(U)
AP(S)

(a) Objects computed

 0

 20

 40

 60

 80

1 5 10 20 50 100

R
P
Q

(
m
s
)

m

BS(U)
BS(S)
AP(U)
AP(S)

(b) Runtime
Fig. 7: Effect of varying m on Melb dataset

1

10

100

1K

10K

100K

1 5 10 20 50 100

O
P
Q

m

BS
AP

(a) Objects computed

 0

 20

 40

 60

 80

 100

1 5 10 20 50 100

R
P
Q

(
m
s
)

m

BS
AP

(b) Runtime
Fig. 8: Effect of varying m on Foursq dataset

of the value of m. The approximate approach outperforms
the baseline, because it considers only the objects that can
potentially be in the top-m results. As more objects qualify
to be a result, the performance of the approximate approach
decreases with the increase of m.
Varying ε . Figure 9 shows the performance when varying the
approximation parameter ε for Melb dataset. The approximate
approach AP consistently outperforms the baseline for all
choices of ε . As the rank of an object is more accurately
approximated for a smaller value of ε , it leads to checking
fewer number of objects and a lower runtime. As a result, the
performance of AP gradually decreases with the increase of ε .
Varying B. By varying the block size B of the rank lists, we
find that the number of objects to check does not vary with B.
If the result of a window needs to be updated, the same set of
validation objects are retrieved regardless of the rank list block
size. So we only show the runtime for varying B in Figure 10a.
For each B, the total runtime is shown as a breakdown of
the computation time for (i) block-level safe rank, (ii) object-
level safe rank, and (iii) validation object computation for both
uniform and skewed query sets. From Figure 10a we conclude
that: (1) as the total number of blocks decreases for higher
B, the time required to compute the block-level safe rank
also decreases; (2) the validation object lookups dominate the
computational costs of the approximate solution.

C. Effectiveness Evaluation
Varying |W |. Table V shows the average approximation ratio
for both datasets. Although the ratio gradually improves as |W |
increases, the change does not follow any obvious pattern. The
explanation for this random behaviour is that popularity is an
average aggregation of |W | ranks, so if both the exact and
approximate popularity do not change at the same rate with
|W |, their ratios do not change in a fixed way.
Varying m. As shown in Figure 3, the query locations orig-
inally follow a skewed distribution, and most query locations

1

10

100

1K

10K

100K

1 2 3 4 5

O
P
Q

ε

BS(U)
BS(S)
AP(U)
AP(S)

(a) Objects computed

 0

 20

 40

 60

 80

1 2 3 4 5

R
P
Q

(
m
s
)

ε

BS(U)
BS(S)
AP(U)
AP(S)

(b) Runtime
Fig. 9: Effect of varying ε on Melb dataset

are clustered in a small area (which is the central business
district of that city), while the rest are scattered regionally
for Melb dataset. In the uniform query set, the queries are
repeated uniformly, thus the upsized query set also follows
the same (skewed) distribution of the original query set. For
this reason, we evaluated our effectiveness as a percentage of
result overlap (between the top-m approximate results and the
top-k exact results) when using the uniformly upsized query
set to capture a more realistic scenario.

The overlap percentage for Melb dataset is shown in
Figure 10b, where k ranges from 10 to 200 and we set
three choices of m (10, 50, 100). As k increases, the overlap
percentage also increases. For m = 50 and 100, the overlap
percentage quickly reaches 90% when k = 50. Note that, if
multiple objects have the same popularity value, we treat their
rank position in the result as equivalent.

Figure 11a shows the overlap percentage for the Foursq
dataset. Although the overlap approaches 100% for higher m,
the overlap is not as high as in the Melb dataset for lower m.
The reason is as follows. As shown in Figure 3 the objects
in Foursq are clustered into cities, where the query locations
are distributed all over the dataspace. Therefore, the popularity
values of most of the objects in a city are very close to each
other. Figure 11b shows a screenshot of the top-10 popularities
computed in the baseline at three example instances. As we
can see, the final rank of two objects can be very far away for a
slight difference in their popularity values; for example, in the
first instance, the difference between every adjacent objects’
popularity is only 0.25 on average, while the absolute values
are at the scale of 50K.

Table VI shows the approximation ratio when varying m
in both datasets. We find that the approximation ratio keeps
improving as m increases, since most of the objects in the top-
m ranked list have very similar scores in both their exact and
approximate popularity when m < 100.
Varying query range. The approximation ratio of the results
w.r.t. varying query ranges is shown in Table VII. The ap-
proximation ratio does not indicate any obvious patterns since
the approximation computation does not depend on the query
radius, or the number of objects falling in that range.
Varying ε , space vs. effectiveness tradeoff. Figure 10c
shows the tradeoff between the space requirement and the
effectiveness as approximation ratio for varying ε . Here, the
x-axis represents the index size in GB for both datasets, where
ε is varied from 1 to 5. Since the approximate popularity of an
object becomes closer to the exact popularity as ε decreases,
the approximation ratio also improves for smaller ε .

 0

 2

 4

 6

 8

 10

 12

32 64 128256 32 64 128256

R
P
Q

(
m
s
)

B

BSR(U)
OSR(U)
VO(U)

BSR(S)
OSR(S)
VO(S)

SU

(a) Effect of varying B

 0

 20

 40

 60

 80

 100

10 20 30 40 50 75 10
0

15
0

20
0

%

o
f

r
e
s
u
l
t

o
v
e
r
l
a
p

Depth k of exact result

m=10
m=50

m=100

(b) % of result overlap for varying m

 1

 2

 3

 4

 5

 6

7.
4

7.
4

4.
1

3.
8

3.
5

19
.5

17
.2 17 14
.2 13

A
p
p
r
o
x
.

R
a
t
i
o

Index size (GB) for varying

Melb

Foursq

(c) Index size vs. approx. ratio for varying ε

Fig. 10: Experiments on Melb dataset
PPPPPDataset

|W | 100 200 400 800 1600

Melb U 2.12 1.60 1.57 1.67 1.55
S 3.19 1.55 2.14 1.30 1.34

Foursq 2.76 6.87 3.49 3.15 2.33

TABLE V: Approximation ratio for
varying |W |

PPPPPDataset
m 1 5 10 20 50 100

Melb U 3.00 4.79 1.57 1.56 1.49 1.49
S 5.61 2.03 2.14 1.60 1.17 1.16

Foursq 1.57 2.62 2.68 3.31 3.37 2.47

TABLE VI: Approximation ratio for
varying m

XXXXXXXDataset
Radius 1 2 4 8 16

Melb U 2.55 1.55 1.57 1.61 1.63
S 3.32 2.88 2.14 2.39 3.55

TABLE VII: Approximation ratio for
varying query radius

 0

 20

 40

 60

 80

 100

10 20 30 40 50 75 10
0

15
0

20
0

%

o
f

r
e
s
u
l
t

o
v
e
r
l
a
p

Depth k of exact result

m=10
m=50

m=100

(a) % of result overlap

(b) Popularity of top-10 objects

Fig. 11: Effectiveness study for varying m in Foursq dataset
VII. CONCLUSION

In this paper, we proposed the problem of top-m rank
aggregation of spatial objects for streaming queries. We have
shown how to bound the rank of an object for any unseen
query, and proposed an approximate solution with a guaranteed
error bound. We presented safe rank to determine whether
the current result is still valid when new queries arrive, and
validation objects to limit the number of objects to update
in the results. Experiments on two real datasets have shown
that the approximate approach is about 3 orders of magnitude
more efficient than the exact solution, while having over 90%
overlap with the results of exact solution when m > 50.
Acknowledgment. This work was supported by Australian Re-
search Council’s Discovery Projects (DP140101587), partially by ARC
DP170102726, DP170102231, and National Natural Science Foundation of
China (NSFC) 91646204. Shane Culpepper is the recipient of an ARC DECRA
Research Fellowship (DE140100275). Farhana Choudhury is a scholarship
recipient from National ICT Australia.

REFERENCES

[1] R. Fagin, R. Kumar, and D. Sivakumar, “Efficient similarity search and
classification via rank aggregation,” in SIGMOD, 2003, pp. 301–312.

[2] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation
methods for the web,” in WWW, 2001, pp. 613–622.

[3] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in PODS, 2001, pp. 102–113.

[4] N. Mamoulis, K. H. Cheng, M. L. Yiu, and D. W. Cheung, “Efficient
aggregation of ranked inputs,” in ICDE, 2006, pp. 72–84.

[5] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent
information: ranking and clustering.” JACM, vol. 55, no. 5, p. 23, 2008.

[6] S. Shekhar, S. K. Feiner, and W. G. Aref, “Spatial computing.” Comm.
of the ACM, vol. 59, no. 1, pp. 72–81, 2016.

[7] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou, “Branch-
and-bound processing of ranked queries,” Inf. Syst., vol. 32, no. 3, pp.
424–445, 2007.

[8] M. Li, Z. Bao, T. Sellis, and S. Yan, “Visualization-aided exploration of
the real estate data,” in ADC, 2016, pp. 435–439.

[9] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring of
top-k queries over sliding windows,” in SIGMOD, 2006, pp. 635–646.

[10] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” PVLDB, vol. 1, no. 2, pp. 1530–1541, 2008.

[11] O. Papapetrou, M. Garofalakis, and A. Deligiannakis, “Sketch-based
querying of distributed sliding-window data streams,” PVLDB, vol. 5,
no. 10, pp. 992–1003, 2012.

[12] C. Bohm, B. C. Ooi, C. Plant, and Y. Yan, “Efficiently processing
continuous k-nn queries on data streams,” in ICDE, 2007, pp. 156–165.

[13] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse nearest neighbor
aggregates over data streams,” in PVLDB, 2002, pp. 814–825.

[14] C. Li, Y. Gu, J. Qi, G. Yu, R. Zhang, and W. Yi, “Processing moving
knn queries using influential neighbor sets,” PVLDB, vol. 8, no. 2, pp.
113–124, 2014.

[15] M. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li, “Continuous reverse
k nearest neighbors queries in euclidean space and in spatial networks,”
VLDB Journal, vol. 21, no. 1, pp. 69–95, 2012.

[16] T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On computing top-t most
influential spatial sites,” in PVLDB, 2005, pp. 946–957.

[17] C.-L. Li, E. T. Wang, G.-J. Huang, and A. L. P. Chen, “Top-n query
processing in spatial databases considering bi-chromatic reverse k-
nearest neighbors,” Inf. Syst., vol. 42, pp. 123–138, 2014.

[18] L. Zhan, Y. Zhang, W. Zhang, and X. Lin, “Finding top k most influential
spatial facilities over uncertain objects,” in CIKM, 2012, pp. 922–931.

[19] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Multi-
guarded safe zone: An effective technique to monitor moving circular
range queries,” in ICDE, 2010, pp. 189–200.

[20] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, “Conceptual parti-
tioning: an efficient method for continuous nearest neighbor monitoring,”
in SIGMOD, 2005, pp. 634–645.

[21] K. Pripužić, I. P. Žarko, and K. Aberer, “Top-k/w publish/subscribe:
A publish/subscribe model for continuous top-k processing over data
streams,” Inf. Syst., vol. 39, pp. 256 – 276, 2014.

[22] J.-L. Koh, C.-Y. Lin, and A. P. Chen, “Finding k most favorite products
based on reverse top-t queries,” PVLDB, vol. 23, no. 4, pp. 541–564,
2014.

[23] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis, “Identifying the
most influential data objects with reverse top-k queries,” PVLDB, vol. 3,
no. 1-2, pp. 364–372, 2010.

[24] R. C.-W. Wong, M. T. Özsu, P. S. Yu, A. W.-C. Fu, and L. Liu, “Efficient
method for maximizing bichromatic reverse nearest neighbor,” PVLDB,
vol. 2, no. 1, pp. 1126–1137, 2009.

[25] Z. Zhou, W. Wu, X. Li, M. L. Lee, and W. Hsu, “MaxFirst for
MaxBRkNN,” in ICDE, 2011, pp. 828–839.

[26] D. Yan, R. C.-W. Wong, and W. Ng, “Efficient methods for finding
influential locations with adaptive grids,” in CIKM, 2011, pp. 1475–
1484.

[27] O. Gkorgkas, A. Vlachou, C. Doulkeridis, and K. Nørvåg, “Discovering
influential data objects over time,” in SSTD, 2013, pp. 110–127.

[28] F. M. Choudhury, Z. Bao, J. S. Culpepper, and T. Sellis, “Monitoring
the top-m aggregation in a sliding window of spatial queries,” 2016.
[Online]. Available: https://arxiv.org/abs/1610.03579

